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1 Introduction

1.1 Trusted time-stamping
The simplest approach to digital time-stamping relies on a trusted third party (TTP).
If Alice wants to time-stamp a document and prove the document’s existence at the
time-stamp’s time to Bob at some later time, she can ask a time-stamp authority (TSA)
to cryptographically sign a secure hash of her document together with the current
time. Bob accepts the TSA’s signature as proof of the document’s existence at the
specified time.1

This scheme requires complete trust of both Alice and Bob in the impartiality of the
TSA. Bob needs to trust the TSA to keep its private key secure and to never produce
time-stamps for the past (an attack which I will refer to as "backdating"). Alice needs
to trust the availability of the time-stamping service provided by the TSA whenever
she wants to time-stamp a document.

This trust in a single authority can be problematic in practice. Even if we could
assume complete impartiality of the TSA with regard to Alice and Bob, what happens
if the party responsible for running the TSA wants to time-stamp a document of their
own? Clearly, to ensure impartiality, another TSA would need to be used. But now
what if neither of our TSAs can be assumed to be impartial with regard to yet another
party who wants to time-stamp a document? Manually keeping track of which TSA
can be trusted under which circumstances quickly becomes impractical. The notion
of distributed trust will simplify matters considerably.

1.2 Distributed trust
1.2.1 Building trust through publication

Trusted time-stamping requires complete trust in the time-stamp authority. This does
not mean, however, that the TSA is actually trustworthy. We can decrease the amount
of trust that we need to put in any single party by distributing trust across multiple
parties.

In the context of time-stamping, we can achieve this by requiring the TSA to publish
its time-stamps to a large number of witnesses. The publication can be implemented
in many different ways, which we will take a look at in more detail later. For now,
the reader may imagine that the TSA publishes its time-stamps in a newspaper.
The time-stamping company Surety actually employed this method of publication in
practice. (Citation needed)

Witnesses keep a record of the time-stamps issued by the TSA. They do not accept
time-stamps issued too far in the past. Staying with the example of time-stamps
published in a newspaper, the newspaper archives of public libraries can act as

1Stuart Haber and W. Scott Stornetta (Jan. 1991). “How to time-stamp a digital document”. In: Journal
of Cryptology 3.2, pp. 99–111. issn: 1432-1378. doi: 10.1007/BF00196791.
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witnesses. To prevent backdating attacks, a library only archives a newspaper which
it receives on the printed date of publication.

When a client wants to verify the validity of a time-stamp, they can now ask a
selection of witnesses for confirmation. Using our example of newspaper archives,
a client visits a handful of library archives and confirms that the time-stamp in
question is actually printed in the archived newspapers of that date. Clients only
accept time-stamps for which they find a sufficient number of witnesses.

Using such a publication scheme, a malicious TSA can no longer carry out a
backdating attack all by itself. Instead, it would require the active cooperation of a
sufficiently large number of witnesses in order to convince a client of the validity
of a backdated time-stamp. The client’s trust is thus distributed over the TSA, the
publication process and the witnesses.

1.2.2 Quantifying distributed trust

Let us now introduce a mathematical model for the publication scheme outlined in
the previous section. Say the TSA publishes its time-stamps to N witnesses. It should
be emphasized that a witness is required to keep a record of time-stamps. Going back
to our example of time-stamps published in a newspaper, N does not correspond to
the number of copies printed. Instead, N refers to the number of places that keep
archives of the newspaper.

We assume that there exist a number K of malicious witnesses that collude together
with the TSA in an attempt to backdate time-stamps.

Finally, a client consults a number n of witnesses to verify a time-stamp. The client
only accepts the time-stamp if all n selected witnesses confirm its existence at the
given time.

Let k be the number of maliciously colluding witnesses selected by the client.
Evidently, a successful backdating attack occurs when the client selects only colluding
witnesses, so when k = n.

Let us now further assume that the client selects its n witnesses from the total
number of witnesses N completely at random. Our problem is now equivalent to the
urn problem when “drawing without replacement”. k thus follows the hypergeometric
distribution2 with the probability mass function:

hypg(k; n, K, N) =

(
K
k

)(
N − K
n − k

)/(
N
n

)
(1)

The probability of a successful backdating attack is then given by the equation:

P(k = n) = hypg(n; n, K, N) =

(
K
n

)/(
N
n

)
(2)

2Catherine Forbes et al. (Nov. 2010). Statistical Distributions. 4th ed. Wiley-Blackwell, pp. 117-119.
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Figure 1: Probability of a successful backdating attack according to the hypergeometric distribution.
N = 30 witnesses keep records of the time-stamps issued by the TSA. Of these witnesses, a number
K (plotted on the x-axis) maliciously collude with the TSA in order to backdate time-stamps. To
check a time-stamp’s validity, a client consults n randomly selected witnesses. The backdating attack
is successful if all n selected witnesses are malicious. As expected, the probability of a successful
backdating attack increases with an increasing number of colluding witnesses K, reaching 1 when
N = K. The client can decrease the likelihood of a successful backdating attack by consulting more
witnesses, as can be observed from the different graph lines.

Figure 1 graphs this probability as a function of K for different values of n.
In practice, the selection of witnesses may not be truly random. Sticking to our

example of newspaper archives, a client will likely prefer libraries which are geo-
graphically close to them. A network protocol for distributed trust may also favor
witnesses with small round-trip times in order to increase performance.

An attacker may be able to leverage this by placing colluding witnesses at favorable
locations. We can model this by introducing a weight parameter ω, where a malicious
witness is ω times more likely to be selected than an honest witness. k then follows a
noncentral hypergeometric distribution.

Two distinct noncentral hypergeometric distributions exist in the literature. They
are frequently confused, because their difference is subtle and both are regularly
referred to as “the” noncentral hypergeometric distribution.3 Fisher’s noncentral
hypergeometric distribution models the case where multiple balls are drawn from
the urn at once and thus the probability of drawing one item is independent of the
other items that are drawn. The precise sample size n can not be known in advance
in this case. Wallenius’ noncentral hypergeometric distribution, on the other hand,

3Agner Fog (2008). “Calculation Methods for Wallenius’ Noncentral Hypergeometric Distribution”.
In: Communications in Statistics - Simulation and Computation 37.2, pp. 258–273. doi: 10.1080/
03610910701790269.
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models the case of sequentially drawing balls from the urn, for a total number of n
draws that has been determined in advance.4

As the client in our model determines the number n of witnesses to consult in
advance, k follows Wallenius’ noncentral hypergeometric distribution. The client
selects witnesses in rounds. kν describes how many malicious witnesses have been
selected after the completion of round ν. The probability of selecting a malicious
witness in round ν + 1 corresponds to the weight ratio of the remaining witnesses:

pν+1 =
(K − kν)ω

(K − kν)ω + (N − K)− (n − kν)
(3)

The probability mass function for k after selecting all n witnesses is:

wnchypg(k; n, K, N, ω) =

(
K
k

)(
N − K
n − k

)
·
∫ 1

0

(
1 − tω/d

)k (
1 − t1/d

)n−k
dt (4)

d = (K − k)ω + (N − K)− (n − k) (5)

The probability of a successful backdating attack is then:

P(k = n) = wnchypg(n; n, K, N, ω) =

(
K
n

)
·
∫ 1

0

(
1 − tω/((K−n)ω+N−n)

)n
dt (6)

Figure 2 graphs this probability as a function of K for different values of ω.
Note that the noncentral hypergeometric distribution is equivalent to the regular

hypergeomtric distribution when ω = 1. When an attacker can ensure that the client
will only select malicious witnesses, ω approaches infinity. In this case, the probability
of a successful backdating attack approaches a step function with the step at n = K.

lim
ω→∞

wnchypg(n; n, K, N, ω) =

{
0 n < K
1 n ≥ K

(7)

1.2.3 Increasing availability

In a real distributed service, we can not assume that a client can always reach any
witness it desires. Network partitions or denial of service attacks may render witnesses
temporarily unavailable. We include a new parameter n′ into our model to accomodate
this possibility. While the client still asks n randomly selected witnesses to verify a

4For a detailed discussion on the distinction between Wallenius’ and Fisher’s noncentral hyper-
geometric distribution, see: Agner Fog (2008). “Calculation Methods for Wallenius’ Noncentral
Hypergeometric Distribution”. In: Communications in Statistics - Simulation and Computation 37.2,
pp. 258–273. doi: 10.1080/03610910701790269
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Figure 2: Probability of a successful backdating attack according to Wallenius’ noncentral hyper-
geometric distribution. N = 30 witnesses keep records of the time-stamps issued by the TSA. Of
these witnesses, a number K (plotted on the x-axis) maliciously collude with the TSA in order to
backdate time-stamps. To check a time-stamp’s validity, a client consults n = 8 randomly selected
witnesses. A malicious witness is ω times more likely to be selected than an honest witness. The
backdating attack is successful if all n selected witnesses are malicious. As expected, the probability of
a successful backdating attack increases with an increasing number of colluding witnesses K, reaching
1 when N = K. Increasing values of ω increase the chances of a successful backdating attack, as can be
observed from the different graph lines. For ω = 1, the graph matches the hypergeometric distribution
of Fig. 1. For large values of ω, the graph approaches a step function with the step at K = n = 8.
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Figure 3: Probability of a client failing to accept a legitimate time-stamp in the face of witness
unavailability. N = 30 witnesses keep records of the time-stamps issued by the TSA. Of these
witnesses, a number U (plotted on the x-axis) is unavailable due to a network partition, a denial of
service attack, a crash failure or some other reason. To check a time-stamp’s validity, a client consults
n = 8 randomly selected witnesses. It accepts the time-stamp if it receives valid responses from n′

witnesses. The client will fail to accept a legitimate time-stamp if more than n − n′ of the selected
witnesses are unavailable. Decreasing values of n′ protect against this happening, as can be observed
from the different graph lines.

time-stamp, it accepts the time-stamp as soon as it receives n′ valid responses from
the witnesses, with n′ < n.

Let U be the total number of witnesses that are unavailable or refuse to confirm
a legitimate time-stamp upon a client’s request. Let u be the number of unavailable
witnesses included in the n witnesses that were randomly selected by the client. A
client will then not accept a legitimate time-stamp if u > n − n′. The probability of
this happening according to the hypergeometric distribution is:

P(u > n − n′) =
n

∑
u=n−n′+1

(
U
u

)(
N − U
n − u

)/(
N
n

)
(8)

Figure 3 graphs this probability as a function of U for different values of n′.
If a client is more likely to select certain witnesses over others and we assume that

an attacker can carry out a targeted denial of service attack on these witnesses, we
need to model the probability of a successful DoS attack using Wallenius’ noncentral
hypergeometric distribution:
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Figure 4: Probability of a client failing to accept a legitimate time-stamp in the face of a targeted
denial of service attack. N = 30 witnesses keep records of the time-stamps issued by the TSA. Of these
witnesses, a number U (plotted on the x-axis) is unavailable due to a targeted DoS attack. To check a
time-stamp’s validity, a client consults n = 8 randomly selected witnesses. The client is ω = 10 times
more likely to select an unavailable witness than an available witness. It accepts the time-stamp if it
receives valid responses from n′ witnesses. The client will fail to accept a legitimate time-stamp if
more than n − n′ of the selected witnesses are unavailable. Decreasing values of n′ protect against DoS
attacks, as can be observed from the different graph lines.

P(u > n − n′) =
n

∑
u=n−n′+1

(
U
u

)(
N − U
n − u

)
·
∫ 1

0

(
1 − tω/d(u)

)u (
1 − t1/d(u)

)n−u
dt

(9)

d(u) =(U − u)ω + (N − U)− (n − u) (10)

Figure 4 graphs this probability as a function of U for different values of n′.
While the introduction of n′ increases availability in the face of network partitions

or denial of service attacks, it compromises the security against backdating attacks. A
backdating attack is now successful when k ≥ n′.

In the case of the hypergeometric distribution, this leaves us with the following
equation.

P(k ≥ n′) =
n

∑
k=n′

(
K
k

)(
N − K
n − k

)/(
N
n

)
(11)
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Figure 5: Probability of a successful backdating attack according to the hypergeometric distribution
when allowing witness unavailability. N = 30 witnesses keep records of the time-stamps issued by the
TSA. Of these witnesses, a number K (plotted on the x-axis) maliciously collude with the TSA in order
to backdate time-stamps. To check a time-stamp’s validity, a client consults n = 8 randomly selected
witnesses. It accepts the time-stamp if it receives valid responses from n′ witnesses. The backdating
attack is successful if at least n′ of the selected witnesses are malicious. Decreasing values of n′ increase
the chances of a successful backdating attack, as can be observed from the different graph lines.
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Figure 6: Probability of a successful backdating attack according to Wallenius’ noncentral hyper-
geometric distribution when allowing witness unavailability. N = 30 witnesses keep records of the
time-stamps issued by the TSA. Of these witnesses, a number K (plotted on the x-axis) maliciously
collude with the TSA in order to backdate time-stamps. To check a time-stamp’s validity, a client
consults n = 8 randomly selected witnesses. It accepts the time-stamp if it receives valid responses
from n′ witnesses. A malicious witness is ω = 10 times more likely to be selected than an honest
witness. The backdating attack is successful if at least n′ of the selected witnesses are malicious.
Decreasing values of n′ increase the chances of a successful backdating attack, as can be observed from
the different graph lines.

Figure 5 graphs this probability as a function of K for different values of n′.
The probability of a successful backdating attack according to Wallenius’ distribu-

tion is then:

P(k ≥ n′) =
n

∑
k=n′

(
K
k

)(
N − K
n − k

)
·
∫ 1

0

(
1 − tω/d(k)

)k (
1 − t1/d(k)

)n−k
dt (12)

d(k) = (K − k)ω + (N − K)− (n − k) (13)

Figure 6 graphs this probability as a function of K for different values of n′.

1.2.4 Protecting against Byzantine failures

We can regard both witness unavailability and the malicious collusion of witnesses for
a backdating attack as types of Byzantine failures. Let B be the number of Byzantine
witnesses. Full protection against backdating as well as denial of service attacks is
provided by the system if and only if:

9



n′ > B (Protection against backdating) (14)

n ≥ n′ + B > 2B (Protection against DoS) (15)

If n ≤ 2B, it is impossible to guarantee protection against both failure modes. In
this case, there exists a fundamental trade-off concerning the choice of n′. Higher
values provide better protection against backdating attacks, while lower values better
protect against DoS.

If the choice of n does not guarantee protection against Byzantine failures, it is
important that the client randomly selects witnesses without bias. If the client favors
certain witnesses (ω > 1), this can vastly increase the chances of a successful attack,
as can be observed by comparing Figure 3 with Figure 4, or Figure 5 with Figure 6.
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