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1 Introduction

1.1 Trusted time-stamping
The simplest approach to digital time-stamping relies on a trusted third party (TTP).
If Alice wants to time-stamp a document and prove the document’s existence at the
time-stamp’s time to Bob at some later time, she can ask a time-stamp authority (TSA)
to cryptographically sign a secure hash of her document together with the current
time. Bob accepts the TSA’s signature as proof of the document’s existence at the
specified time.1

From now on, I will refer to the Alice, the party requesting a time-stamp from
the TSA, as the document owner. Bob, the party who wants to verify a time-stamp’s
validity, will be called the verifier.

The scheme outlined above requires complete trust of both the document owner
and the verifier in the impartiality of the TSA. The verifier needs to trust the TSA to
keep its private key secure and to never produce time-stamps for the past (an attack
which I will refer to as backdating). The document owner needs to trust the availability
of the time-stamping service provided by the TSA whenever she wants to time-stamp
a document.

This trust in a single authority can be problematic in practice. Even if we could
assume complete impartiality of the TSA with regard to the document owner and
the verifier, what happens if the party responsible for running the TSA wants to
time-stamp a document of their own? Clearly, to ensure impartiality, another TSA
would need to be used. But now what if neither of our TSAs can be assumed to be
impartial with regard to yet another party who wants to time-stamp a document?
Manually keeping track of which TSA can be trusted under which circumstances
quickly becomes impractical. The notion of distributed trust will simplify matters
considerably.

1.2 Distributed trust
1.2.1 Building trust through publication

Trusted time-stamping requires complete trust in the time-stamp authority. This does
not mean, however, that the TSA is actually trustworthy. We can decrease the amount
of trust that we need to put in any single party by distributing trust across multiple
parties.

In the context of time-stamping, we can achieve this by requiring the TSA to publish
its time-stamps to a large number of witnesses. The publication can be implemented
in many different ways, which we will take a detailed look at in Section 1.3. For
now, the reader may imagine that the TSA publishes its time-stamps in a newspaper.

1Stuart Haber and W. Scott Stornetta (Jan. 1991). “How to time-stamp a digital document”. In: Journal
of Cryptology 3.2, pp. 99–111. issn: 1432-1378. doi: 10.1007/BF00196791.
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The time-stamping company Surety actually employed this method of publication in
practice.2

Witnesses keep a record of the time-stamps issued by the TSA. They do not accept
time-stamps issued too far in the past. Staying with the example of time-stamps
published in a newspaper, the newspaper archives of public libraries can act as
witnesses. To prevent backdating attacks, a library only archives a newspaper which
it receives on the printed date of publication.

When a verifier wants to confirm the validity of a time-stamp, she can now ask a
selection of witnesses for confirmation. Using our example of newspaper archives,
a verifier visits a handful of library archives and confirms that the time-stamp in
question is actually printed in the archived newspapers of that date. Verifiers only
accept time-stamps for which they find a sufficient number of witnesses.

Using such a publication scheme, a malicious TSA can no longer carry out a
backdating attack all by itself. Instead, it would require the active cooperation of a
sufficiently large number of witnesses in order to convince a verifier of the validity
of a backdated time-stamp. The verifier’s trust is thus distributed over the TSA, the
publication process and the witnesses.

1.2.2 Quantifying distributed trust

Let us now introduce a mathematical model for the publication scheme outlined in
Section 1.2.1. Say the TSA publishes its time-stamps to N witnesses. It should be
emphasized that a witness is required to keep a record of time-stamps. Going back
to our example of time-stamps published in a newspaper, N does not correspond to
the number of copies printed. Instead, N refers to the number of places that keep
archives of the newspaper.

We assume that there exist a number K of malicious witnesses that collude together
with the TSA in an attempt to backdate time-stamps.

Finally, a verifier consults a number n of witnesses to verify a time-stamp. The
verifier only accepts the time-stamp if all n selected witnesses confirm its existence at
the given time.

Let k be the number of maliciously colluding witnesses selected by the verifier. Evi-
dently, a successful backdating attack occurs when the verifier selects only colluding
witnesses, so when k = n.

Let us now further assume that the verifier selects its n witnesses from the total
number of witnesses N at random with a uniform distribution. Our problem is now
equivalent to the urn problem when “drawing without replacement”. k thus follows

2“As an extra measure, Surety publishes a weekly summary hash value in The New York Times. This
‘widely-witnessed’ value provides an anchor for the security of the whole system.” Surety LLC
(n.d.). What We Do. https://web.archive.org/web/20250325081455/https://www.surety.com/
digital-copyright-protection/prove-ownership. Accessed: 25 March 2025
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Figure 1: Probability of a successful backdating attack according to the hypergeometric distribution.
N = 30 witnesses keep records of the time-stamps issued by the TSA. Of these witnesses, a number
K (plotted on the x-axis) maliciously collude with the TSA in order to backdate time-stamps. To
check a time-stamp’s validity, a verifier consults n randomly selected witnesses. The backdating attack
is successful if all n selected witnesses are malicious. As expected, the probability of a successful
backdating attack increases with an increasing number of colluding witnesses K, reaching 1 when
N = K. The verifier can decrease the likelihood of a successful backdating attack by consulting more
witnesses, as can be observed from the different graph lines.

the hypergeometric distribution3 with the probability mass function:

hypg(k; n, K, N) =

(
K
k

)(
N − K
n − k

)/(
N
n

)
(1)

The probability of a successful backdating attack is then given by the equation:

P(k = n) = hypg(n; n, K, N) =

(
K
n

)/(
N
n

)
(2)

Figure 1 graphs this probability as a function of K for different values of n.
In practice, the selection of witnesses may not be truly random. Sticking to our

example of newspaper archives, a verifier might prefer libraries which are geographi-
cally close to them. A network protocol for distributed trust may also favor witnesses
with small round-trip times in order to increase performance.

An attacker may be able to leverage this by placing colluding witnesses at favorable
locations. We can model this by introducing a weight parameter ω, where a verifier

3Catherine Forbes et al. (Nov. 2010). Statistical Distributions. 4th ed. Wiley-Blackwell, pp. 117-119.
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is ω times more likely to select a malicious witness than an honest witness. k then
follows a noncentral hypergeometric distribution.

Two distinct noncentral hypergeometric distributions exist in the literature. They are
frequently confused, as the difference between them is subtle and both are regularly
referred to as “the” noncentral hypergeometric distribution.4 Fisher’s noncentral
hypergeometric distribution models the case where multiple balls are drawn from
the urn at once and thus the probability of drawing one item is independent of the
other items that are drawn. The sample size n can not be known in advance in this
case, as this would introduce a dependence between draws. Wallenius’ noncentral
hypergeometric distribution, on the other hand, models the case of sequentially
drawing balls from the urn, for a total number of n draws that has been determined
in advance.5

As the verifier in our model determines the number n of witnesses to consult in
advance, k follows Wallenius’ noncentral hypergeometric distribution. The verifier
selects witnesses in rounds. kν describes how many malicious witnesses she selects
after the completion of round ν. The probability of selecting a malicious witness in
round ν + 1 corresponds to the weight ratio of the remaining witnesses:

pν+1 =
(K − kν)ω

(K − kν)ω + (N − K)− (n − kν)
(3)

The probability mass function for k after selecting all n witnesses is:

wnchypg(k; n, K, N, ω) =

(
K
k

)(
N − K
n − k

)
·
∫ 1

0

(
1 − tω/d

)k (
1 − t1/d

)n−k
dt (4)

d = (K − k)ω + (N − K)− (n − k) (5)

The probability of a successful backdating attack is then:

P(k = n) = wnchypg(n; n, K, N, ω) =

(
K
n

)
·
∫ 1

0

(
1 − tω/((K−n)ω+N−n)

)n
dt (6)

Figure 2 graphs this probability as a function of K for different values of ω.
Note that the noncentral hypergeometric distribution is equivalent to the regular

hypergeomtric distribution when ω = 1. When an attacker can ensure that the verifier

4Agner Fog (2008). “Calculation Methods for Wallenius’ Noncentral Hypergeometric Distribution”.
In: Communications in Statistics - Simulation and Computation 37.2, pp. 258–273. doi: 10.1080/
03610910701790269.

5For a detailed discussion on the distinction between Wallenius’ and Fisher’s noncentral hyper-
geometric distribution, see: Agner Fog (2008). “Calculation Methods for Wallenius’ Noncentral
Hypergeometric Distribution”. In: Communications in Statistics - Simulation and Computation 37.2,
pp. 258–273. doi: 10.1080/03610910701790269
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Figure 2: Probability of a successful backdating attack according to Wallenius’ noncentral hyper-
geometric distribution. N = 30 witnesses keep records of the time-stamps issued by the TSA. Of
these witnesses, a number K (plotted on the x-axis) maliciously collude with the TSA in order to
backdate time-stamps. To check a time-stamp’s validity, a verifier consults n = 8 randomly selected
witnesses. The verifier is ω times more likely to select a malicious witness than an honest witness. The
backdating attack is successful if all n selected witnesses are malicious. As expected, the probability of
a successful backdating attack increases with an increasing number of colluding witnesses K, reaching
1 when N = K. Increasing values of ω increase the chances of a successful backdating attack, as can be
observed from the different graph lines. For ω = 1, the graph matches the hypergeometric distribution
of Fig. 1. For large values of ω, the graph approaches a step function with the step at K = n = 8.
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will only select malicious witnesses, ω approaches infinity. In this case, the probability
of a successful backdating attack approaches a step function with the step at n = K.

lim
ω→∞

wnchypg(n; n, K, N, ω) =

{
0 n < K
1 n ≥ K

(7)

1.2.3 Increasing availability

In a real distributed service, we can not assume that a verifier can always reach
any witness she desires. Network partitions or denial of service attacks may render
witnesses temporarily unavailable. We include a new parameter n′ into our model to
accomodate this possibility. While the verifier still asks n randomly selected witnesses
to verify a time-stamp, she accepts the time-stamp as soon as she receives n′ valid
responses from the witnesses, with n′ < n.

Let U be the total number of witnesses that are unavailable or refuse to confirm
a legitimate time-stamp upon a client’s request. Let u be the number of unavailable
witnesses included in the n witnesses that the verifier randomly selected. The verifier
will then not accept a legitimate time-stamp if u > n − n′. The probability of this
happening according to the hypergeometric distribution is:

P(u > n − n′) =
n

∑
u=n−n′+1

(
U
u

)(
N − U
n − u

)/(
N
n

)
(8)

Figure 3 graphs this probability as a function of U for different values of n′.
If a verifier is more likely to select certain witnesses over others and we assume that

an attacker can carry out a targeted denial of service attack on these witnesses, we
need to model the probability of a successful DoS attack using Wallenius’ noncentral
hypergeometric distribution:

P(u > n − n′) =
n

∑
u=n−n′+1

(
U
u

)(
N − U
n − u

)
·
∫ 1

0

(
1 − tω/d(u)

)u (
1 − t1/d(u)

)n−u
dt

(9)

d(u) =(U − u)ω + (N − U)− (n − u) (10)

Figure 4 graphs this probability as a function of U for different values of n′.
While the introduction of n′ increases availability in the face of network partitions

or denial of service attacks, it compromises the security against backdating attacks. A
backdating attack is now successful when k ≥ n′.

In the case of the hypergeometric distribution, this leaves us with the following
equation.
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Figure 3: Probability of a verifier failing to accept a legitimate time-stamp in the face of witness
unavailability. N = 30 witnesses keep records of the time-stamps issued by the TSA. Of these witnesses,
a number U (plotted on the x-axis) is unavailable due to a network partition, a denial of service attack, a
crash failure or some other reason. To check a time-stamp’s validity, a verifier consults n = 8 randomly
selected witnesses. She accepts the time-stamp if she receives valid responses from n′ witnesses. The
verifier will fail to accept a legitimate time-stamp if more than n − n′ of the selected witnesses are
unavailable. Decreasing values of n′ protect against this happening, as can be observed from the
different graph lines.
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Figure 4: Probability of a verifier failing to accept a legitimate time-stamp in the face of a targeted
denial of service attack. N = 30 witnesses keep records of the time-stamps issued by the TSA. Of
these witnesses, a number U (plotted on the x-axis) is unavailable due to a targeted DoS attack. To
check a time-stamp’s validity, a verifier consults n = 8 randomly selected witnesses. The verifier is
ω = 10 times more likely to select an unavailable witness than an available witness. She accepts the
time-stamp if she receives valid responses from n′ witnesses. The verifier will fail to accept a legitimate
time-stamp if more than n − n′ of the selected witnesses are unavailable. Decreasing values of n′

protect against DoS attacks, as can be observed from the different graph lines.
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Figure 5: Probability of a successful backdating attack according to the hypergeometric distribution
when allowing witness unavailability. N = 30 witnesses keep records of the time-stamps issued by
the TSA. Of these witnesses, a number K (plotted on the x-axis) maliciously collude with the TSA in
order to backdate time-stamps. To check a time-stamp’s validity, a verifier consults n = 8 randomly
selected witnesses. She accepts the time-stamp if she receives valid responses from n′ witnesses. The
backdating attack is successful if at least n′ of the selected witnesses are malicious. Decreasing values
of n′ increase the chances of a successful backdating attack, as can be observed from the different
graph lines.

P(k ≥ n′) =
n

∑
k=n′

(
K
k

)(
N − K
n − k

)/(
N
n

)
(11)

Figure 5 graphs this probability as a function of K for different values of n′.
The probability of a successful backdating attack according to Wallenius’ distribu-

tion is then:

P(k ≥ n′) =
n

∑
k=n′

(
K
k

)(
N − K
n − k

)
·
∫ 1

0

(
1 − tω/d(k)

)k (
1 − t1/d(k)

)n−k
dt (12)

d(k) = (K − k)ω + (N − K)− (n − k) (13)

Figure 6 graphs this probability as a function of K for different values of n′.

1.2.4 Protecting against Byzantine failures

We can regard both witness unavailability and the malicious collusion of witnesses for
a backdating attack as types of Byzantine failures. Let B be the number of Byzantine

9



0 5 10 15 20 25 30
# of colluding witnesses K

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
P

(k
≥

n′
)

Backdating vs. availability (Wallenius’ distribution, N = 30, n = 8, ω = 10)

n′ = 8
n′ = 5
n′ = 3
n′ = 1

Figure 6: Probability of a successful backdating attack according to Wallenius’ noncentral hyper-
geometric distribution when allowing witness unavailability. N = 30 witnesses keep records of the
time-stamps issued by the TSA. Of these witnesses, a number K (plotted on the x-axis) maliciously
collude with the TSA in order to backdate time-stamps. To check a time-stamp’s validity, a verifier
consults n = 8 randomly selected witnesses. She accepts the time-stamp if she receives valid responses
from n′ witnesses. The verifier is ω = 10 times more likely to select a malicious witness than an
honest witness. The backdating attack is successful if at least n′ of the selected witnesses are malicious.
Decreasing values of n′ increase the chances of a successful backdating attack, as can be observed from
the different graph lines.
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witnesses. Full protection against backdating as well as denial of service attacks is
provided by the system if and only if:

n′ > B (Protection against backdating) (14)

n ≥ n′ + B > 2B (Protection against DoS) (15)

If n ≤ 2B, it is impossible to guarantee protection against both failure modes. In
this case, there exists a fundamental trade-off concerning the choice of n′. Higher
values provide better protection against backdating attacks, while lower values better
protect against DoS.

If the choice of n does not guarantee protection against Byzantine failures, it is
important that the verifier randomly selects witnesses without bias. If the verifier
favors certain witnesses (ω > 1), this can vastly increase the chances of a successful
attack, as can be observed by comparing Figure 3 with Figure 4, or Figure 5 with
Figure 6.

1.3 Implementations of time-stamp publication
1.3.1 Witness signatures

In Section 1.2, we have modeled time-stamp publication in a rather tradtional way.
In our model, the TSA publishes its time-stamps to N witnesses, of which a verifier
later consults a nuber n to confirm the validity of a time-stamp. Time-stamps need
to be published to all N participating witnesses, who are required to keep records
of all valid time-stamps they encounter. Such a scheme can even be implemented by
publishing time-stamps in a newspaper.

We can improve the scheme by having witnesses cryptographically sign the time-
stamp to confirm its validity.6 The signature serves as a verifiable record of the
witnessing. Witnesses can send the signed time-stamp to the document owner, which
frees them from the responsibility of keeping records. After all, it is sensible that the
party requesting a time-stamp should be responsible for storing the time-stamp and
the information necessary for verification. This scheme has the additional advantage
of reducing the communication cost for time-stamp verification. When a verifier
wants to confirm a time-stamp, she only needs to communicate with the document
owner, when before she had to exchange messages with n witnesses.

These modifications don’t influence the statistical models described in Section 1.2.
All equations of this section are still applicable.

We can also reduce the communication cost of time-stamp publication by only
asking n witnesses for signatures instead of publishing the time-stamp to all N

6Dave Bayer, Stuart Haber, and W. Scott Stornetta (1993). “Improving the Efficiency and Reliability
of Digital Time-Stamping”. In: Sequences II. ed. by Renato Capocelli, Alfredo De Santis, and Ugo
Vaccaro. Springer New York, pp. 329–334. isbn: 978-1-4613-9323-8.
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participating witnesses. This still offers full protection against backdating and denial
of service attacks if n and n′ are chosen according to Equations (14) and (15).

If n ≤ 2B, some mechanism should be used to ensure that witnesses are chosen
randomly with uniform distribution (ω = 1). As explained in Section 1.2.4, this
minimizes the probability of a successful backdating or denial of service attack.
Section 1.3.2 describes one such mechanism.

Finally, it should be noted that witness signatures are really just time-stamps. This
allows us to get rid of the TSA altogether. A document owner can directly send
her document hash and the current time to n witnesses and collect the returning
signatures. By sending n′ witness signatures to a verifier, the document owner can
prove the validity of her time-stamp.

1.3.2 Random-witness time-stamping

12
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Glossary
Backdating An attack trying to forge time-stamps dated in the past

Document Owner The party owning the document for which they request a time-
stamp

Time-Stamp Authority A trusted third party in the context of time-stamping

Verifier The party who wants to confirm the validity of a time-stamp

Witness An entity who witnessed a timestamp at the time of its creation

Acronyms
DoS Denial of Service

TSA Time-Stamp Authority

TTP Trusted Third Party
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i


	Introduction
	Trusted time-stamping
	Distributed trust
	Building trust through publication
	Quantifying distributed trust
	Increasing availability
	Protecting against Byzantine failures

	Implementations of time-stamp publication
	Witness signatures
	Random-witness time-stamping


	References
	Glossary
	Acronyms
	Appendix

