RESEARCH PROPOSAL
Towards a Generalized Framework for Secure
Time-Stamping

Keno Goertz

February 24, 2025

1 Problem statement

Many applications require associating a moment
in time with digital data: Be it the time of financial
transactions in a payment system or the date of a
patent’s registration.

Digital time-stamps make this association be-
tween data and time verifiable: A time-stamp pro-
vides some way for a third party to verify that the
datum was actually in existence at the time asso-
ciated with it.

Many protocols for digital time-stamping have
been proposed over the 90’s and 2000’s. What
started with the simple idea of letting a trusted
third party issue time-stamps, eventually devel-
oped into the modern notion of a blockchain. Sec-
tion 2 provides an overview of time-stamp proto-
cols published in the literature.

As the example of blockchains shows, time-
stamp protocols from the 90’s can be used as
building blocks for modern and practical dis-
tributed protocols, with applications going far be-
yond the original idea of attaching a time to a
datum. Yet, the relationship between the differ-
ent suggested time-stamp protocols seems to be
poorly understood.

I think it likely that important insights into dis-
tributed system design can be gained by figuring
out how the different proposed time-stamp pro-
tocols could be unified into one generalized time-
stamping framework. The framework would pro-
vide a clear picture of how the building blocks
used within time-stamp protocols relate to each
other. This may help in identifying trade-offs be-
tween different approaches to time-stamping. It

would also facilitate the adoption of a time-stamp
protocol for a specific use case: Rather than hav-
ing to build a new protocol from scratch, the time-
stamping framework could be consulted to con-
struct a protocol tailored to the requirements of
the use case.

In my thesis, I will unify the existing ap-
proaches to time-stamping in such a generalized
framework. I will go on to identify potential
trade-offs concerning time-stamp resolution, se-
curity and performance. Finally, I will conduct
experiments on some of the identified trade-offs
using a practical implementation of a time-stamp
protocol.

2 Related Work

Trusted Time-Stamping Perhaps the simplest
time-stamp protocol is based on central trust in a
Time-Stamp Authority (TSA), acting as a trusted
third party for issuing time-stamps. In such a
scheme, a client sends the cryptographic hash of
the data for which it desires a time-stamp to the
TSA. The TSA then issues a time-stamp by signing
the client-provided hash along with the current
time using public-key cryptography. [4] The se-
curity of trusted time-stamping depends on com-
plete trust in the time-stamp authority and the se-
curity of its private key. The time-stamp protocols
described in the following paragraphs reduce the
level of trust that needs to be placed in a single
entity.



Random-Witness Time-Stamping To decrease
the trust required in a single TSA, it can instead be
distributed among witnesses selected from a fixed
set of N servers. [4] Each of the servers is assigned
a unique ID. A valid time-stamp requires the sig-
nature of k servers, which are selected by inter-
preting the outputs of a pseudo-random number
generator (PRNG) as a set of server IDs. The
PRNG is seeded with the hash of the data to be
time-stamped.

An attacker who wants to forge a back-dated
time-stamp would have to control all k servers
which were selected as random witnesses by the
PRNG. Even assuming the attacker had control
over more than k servers, this is still very unlikely
to happen.

Threshold Cryptography Threshold cryptogra-
phy simplifies the public key infrastructure of a
distributed time-stamping scheme. [6] A private
key is shared among servers participating in the
time-stamping scheme in such a way that the col-
laboration of k servers is required in order to pro-
duce a valid signature for a time-stamp certificate.
Clients then only need to maintain a single public
key. However, the security of this scheme depends
completely on the attacker controlling less than k
nodes.

Linked Time-Stamping Another way to estab-
lish trust in a TSA is to have it chain time-stamps
together. [4] In this approach, each time-stamp
contains information on the time-stamp preceding
it. Time-stamps of the chain need to be regularly
and widely publicized (e. g. by printing them in
a newspaper). A time-stamp can then be verified
by ensuring that it fits into the publicized chain.
The existence of a publicly known chain prevents
the TSA from back-dating time-stamps.

Tree-Based Time-Stamping Time-stamps can be
stored in a hash tree rather than in a linked list.
[1] This reduces storage requirements and time-
stamp verification complexity.

The premise is that publicizing time-stamps,
as required in linked time-stamping, is expensive
and can only happen at longer time intervals. In
order to be able to issue more than one time-
stamp in one interval, a linked time-stamping

scheme may only publicize every Nth time-stamp.
A client then needs to keep up to N time-stamps
to verify that it is part of the publicized chain.

In tree-based time-stamping, on the other hand,
the hashes of N documents can be used to con-
struct a hash tree, only the root of which is then
publicized. A client then only needs to store log N
document hashes to verify that their document
is part of the hash tree. While reducing storage
requirements, tree-based time-stamping sacrifices
the total order of time-stamps as it is provided by
linked time-stamping.

One-Way Accumulators One-way accumulators
are a “decentralized alternative to digital signa-
tures” [2]. They can be used to construct a time-
stamp protocol. [2]

A one-way accumulator is a one-way hash func-
tions with a quasi-commutative property. The ver-
ification of a time-stamp based on one-way accu-
mulators is even more efficient than in the tree-
based approach: Only a constant amount of in-
formation is needed, regardless of the number of
documents which were used to construct the pub-
licized hash.

Combining Different Time-Stamping Schemes
Linked and tree-based time-stamping both re-
quire that time-stamps be publicized in some
widely accessible way (e. g. by printing them in
newspapers). Bayer et al. [1] note that random-
witness time-stamping not only achieves such
publication among the witnesses, but with their
signatures also provides a proof that the publi-
cation was witnessed. The authors conclude that
the different approaches to digital time-stamping
could be used in conjunction.

Blockchains The modern concept of a block-
chain [5] is heavily inspired by Haber and Stor-
netta’s approach to linked time-stamping. Blocks
in the Bitcoin blockchain are time-stamps of finan-
cial transactions. These are chained together just
as in linked time-stamping.

Bitcoin works in a permissionless setting by us-
ing a proof of work to determine which node is
allowed to add a block to the chain, and by lever-
aging the longest chain rule to determine which
of the potentially competing chains should be



trusted. The protocol achieves eventual consis-
tency between the participating nodes without the
need for a central authority.

3 Methodology and
Research Questions

RQ1 How can the time-stamp protocols existing
in the literature be combined into a generalized
framework for digital time-stamping?

In order to answer this research question, I
will conduct a narrative literature review. I have
already summarized what in my opinion seem to
be the relevant time-stamp protocols in Section 2.
I will start the work on my thesis by searching for
any papers I have potentially missed up onto this
point.

I will go on to identify common themes and
building blocks shared among the different time-
stamping schemes. I will try to combine these
building blocks in a generalized time-stamping
framework that, ideally, can be used to derive all
of the existing time-stamp protocols and poten-
tially even combine their building blocks in ways
not seen in the literature before.

I will then construct hypotheses for potential
trade-offs between different configurations of this
generalized time-stamping framework. I will par-
ticularly focus on the trade-offs between temporal
resolution, performance (time-stamp throughput
and scalability) and security (against back-dating
and denial of service).

RQ1 will lead to many new research questions
concerning the trade-offs of time-stamp protocols.
With RQ2, I focus on the questions directly re-
lated to the random-witness approach to keep the
project within the scope of a thesis. I specifically
choose the random-witness approach because of
its interesting probabilistic properties. I have also
already created a practical implementation of this
protocol [3], which I can use to conduct experi-
ments.

RQ2 How does the choice of configuration
parameters for the random-witness time-stamp
algorithm affect temporal resolution, perfor-
mance (throughput and scalability) and security

(against back-dating and denial of service)?

To answer this research question, I will first
try to identify some hard theoretical trade-offs
between temporal resolution, throughput and
security. It seems a reasonable assumption that
such trade-offs exist: For example, the achievable
temporal resolution likely depends on the prop-
agation delay of the network. Requiring a small
temporal resolution may thus facilitate denial of
service attacks which can increase propagation
delays by congesting the network. As another
example, the throughput of time-stamps that
build a total order is obviously bounded by the
inverse of the temporal resolution. However, the
relationship between temporal resolution and
throughput is more complex if time-stamps only
form a partial order.

Based on the insights gained by theoretical con-
siderations, I will construct hypotheses for the
effect different configuration parameters should
have on measurable quantities (like throughput,
response time, bandwidth usage, temporal reso-
lution of time-stamps, etc.).

I will finally set up experiments to test these
hypotheses using my distributed time-stamping
library written in Rust [3] and a network emula-
tion software like Mininet or Toxiproxy. Emula-
tion allows me to easily change between different
network configurations and run experiments at a
low cost.

4 Timeline

I aim to achieve the following milestones by the
specified times.

® March 20: Finish the narrative literature re-
view, combining the different existing time-
stamp protocols into one generalized frame-
work for time-stamping. Discuss trade-offs
between different configurations within this
time-stamping framework. Choose a network
emulation tool and get to know it.

® April 17: Identify the potential theoretical
limits of and trade-offs between time-stamp
throughput, temporal resolution and accu-
racy and write the corresponding sections in



the thesis. Construct hypotheses and set up
experiments for network emulation.

* May 15: Run and evaluate the experiments,
write a first draft of the entire thesis.

As explained in Section 3, I expect the thesis
to open up many more research questions con-
cerning the trade-offs of time-stamp protocols. If
I can complete the timeline above quicker than ex-
pected and have additional time on my hands, I
will start tackling these questions.

References

[1] Dave Bayer, Stuart Haber, and W. Scott Stor-
netta. Improving the efficiency and reliabil-
ity of digital time-stamping. In Renato Capoc-
elli, Alfredo De Santis, and Ugo Vaccaro, ed-
itors, Sequences II, pages 329-334, New York,
NY, 1993. Springer New York.

[2] Josh Benaloh and Michael de Mare. One-
Way Accumulators: A Decentralized Alterna-
tive to Digital Signatures. In Tor Helleseth,
editor, Advances in Cryptology — EUROCRYPT
‘93, pages 274-285, Berlin, Heidelberg, 1994.
Springer.

[3] Keno Goertz. dts. https://gitlab.
informatik.hu-berlin.de/goertzke/dts.
Accessed: 2025-02-20.

[4] Stuart Haber and W. Scott Stornetta. How
to time-stamp a digital document. Journal of
Cryptology, 3(2):99-111, January 1991.

[5] Satoshi Nakamoto. Bitcoin: A peer-to-peer
electronic cash system. Satoshi Nakamoto, 2008.

[6] Daniela Tulone. A Scalable and Intrusion-
tolerant Digital Time-stamping System. In
2006 IEEE International Conference on Communi-
cations, volume 5, pages 2357-2363, June 2006.
ISSN: 1938-1883.



