import h5py import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from h5py import Dataset from sklearn.preprocessing import MinMaxScaler from torch.utils.data import DataLoader from torch.optim import SGD, Adam from torch.nn import Linear, Sigmoid, Module, MSELoss, BCELoss from tqdm import tqdm # f hat 100k keys, jeder key hat eine hdf5 group als value # jede group hat 2 keys. in key 'X' ist ein 2d numpy array # welches die 200x200 pixel des bildes speichert (dset[70:71,:] # zugriff auf zeile 71) und in key'Y' sind die drei # korrespondierenden achsenwerte der kamera X, Y und Z def prepare_data(path): # load h5 file sims = 3000 # only half the data x = [] y = [] with h5py.File(path, 'r') as f: for key in range(sims): X = np.array(f['/' + str(key) + '/X']) Y = np.array(f['/' + str(key) + '/Y']) X = MinMaxScaler().fit_transform(X) # normalise the data between 0 and 1 # Y = MinMaxScaler().fit_transform(Y) # print(Y[:]) if np.amax(X) > 0: # ignore the blank images (no data) x.append(X) y.append(Y) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print(device) x = torch.tensor(x, dtype=torch.float32, device=device) # input y = torch.tensor(y, dtype=torch.float32, device=device) # output print('x.shape', np.shape(x)) print('y.shape', np.shape(y)) print(x.element_size() * x.nelement()) # split test and train data data_length = np.shape(x)[0] train_length = data_length - 1000 train_x = x[0:train_length] test_x = x[train_length:data_length] train_y = y[0:train_length] test_y = y[train_length:data_length] train = Data(train_x, train_y) test = Data(test_x, test_y) return train, test # train, test = dataset.get_splits() # trainloader = torch.utils.data.DataLoader(x, batch_size=8, shuffle=True, num_workers=0) def train_model(train_dl, model, lr, numEpochs, optimizerFlag, modelSaveFileName, criterionFlag, startEpoch): if optimizerFlag == 'A': optimizer = Adam(model.parameters(), lr=lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) else: optimizer = SGD(model.parameters(), lr=lr, momentum=0.9) if criterionFlag == 'MSE': criterion = MSELoss() else: criterion = BCELoss() for epoch in range(startEpoch + 1, numEpochs + 1): # enumerate mini batches loop = tqdm(enumerate(train_dl), total=len(train_dl), leave=False) for i, (inputs, targets) in loop: # clear the gradients optimizer.zero_grad() # compute the model output yhat = model(inputs) # calculate loss loss = criterion(yhat, targets) # credit assignment loss.backward() # update model weights optimizer.step() # upgrade progress bar loop.set_description(f"Epoch [{epoch}/{numEpochs}]") # loop.set_postfix(loss=loss.item(),acc=torch.rand(1).item()) if epoch % 10 == 0: torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'lr': lr, }, modelSaveFileName + str(epoch) + ".pt") # TODO anpassen an unsere Situation class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 8, kernel_size=5) # 1d pictures, 8 pictures at a time, 5x5 kernel size self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(1, 8, kernel_size=5) self.fc1 = nn.Linear(200, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x class Data(Dataset): def __init__(self, x, y): self.x = x self.y = y self.len = len(x) def __getitem__(self, index): self.xc = self.x[index] self.yc = self.y[index] return self.xc, self.yc def __len__(self): return self.len path = "training_data_alignment.h5" batch_size = 8 num_Epochs = 100 modelSaveFileName = 'model.pt' optimizerFlag = 'A' criterionFlag = 'MSE' # MSE oder BCE startEpoch = 1 learning_rate = 0.01 train, test = prepare_data(path) train_dl = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=False) test_dl = DataLoader(test, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=False) net = Net() train_model(train_dl, net, learning_rate, num_Epochs, optimizerFlag, modelSaveFileName, criterionFlag, startEpoch) # print(net)