diff --git a/paper/camera-ready/clef-ehealth-wbi.zip b/paper/camera-ready/clef-ehealth-wbi.zip
new file mode 100644
index 0000000000000000000000000000000000000000..a457ded0920378eb928ff6bd8918205f1651ebb9
Binary files /dev/null and b/paper/camera-ready/clef-ehealth-wbi.zip differ
diff --git a/paper/camera-ready/wbi-eclef18.pdf b/paper/camera-ready/wbi-eclef18.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..70b1eb844748a78f3a7236fa4280cc5b646f1b68
Binary files /dev/null and b/paper/camera-ready/wbi-eclef18.pdf differ
diff --git a/paper/references.bib b/paper/references.bib
new file mode 100644
index 0000000000000000000000000000000000000000..40bed0c3687395e97d08a6d4dc4d6f15001830be
--- /dev/null
+++ b/paper/references.bib
@@ -0,0 +1,518 @@
+
+@inproceedings{peters_deep_2018,
+	title = {Deep contextualized word representations},
+	abstract = {We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across...},
+	urldate = {2018-02-16},
+	booktitle = {The 16th {Annual} {Conference} of the {North} {American} {Chapter} of the {Association} for {Computational} {Linguistics}},
+	author = {Peters, Matthew E. and Neumann, Mark and Iyyer, Mohit and Gardner, Matt and Clark, Christopher and Lee, Kenton and Zettlemoyer, Luke},
+	year = {2018},
+	keywords = {Context Embeedings, Document Classification, Embeddings, Read},
+	file = {arXiv\:1802.05365 PDF:/Users/mario/Zotero/storage/89C2DP8R/Peters et al. - 2018 - Deep contextualized word representations.pdf:application/pdf;arXiv.org Snapshot:/Users/mario/Zotero/storage/YF7GZNUI/1802.html:text/html;Full Text PDF:/Users/mario/Zotero/storage/2SWMPWEA/Peters et al. - 2018 - Deep contextualized word representations.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/9X2UN33P/forum.html:text/html}
+}
+
+@inproceedings{neveol_clef_2017,
+	title = {{CLEF} {eHealth} 2017 {Multilingual} {Information} {Extraction} task overview: {ICD}10 coding of death certificates in {English} and {French}},
+	shorttitle = {{CLEF} {eHealth} 2017 {Multilingual} {Information} {Extraction} task overview},
+	booktitle = {{CLEF} 2017 {Evaluation} {Labs} and {Workshop}: {Online} {Working} {Notes}, {CEUR}-{WS}},
+	author = {Névéol, Aurélie and Anderson, Robert N. and Cohen, K. Bretonnel and Grouin, Cyril and Lavergne, Thomas and Rey, Grégoire and Robert, Aude and Rondet, Claire and Zweigenbaum, Pierre},
+	year = {2017},
+	keywords = {Read},
+	pages = {17},
+	file = {Fulltext:/Users/mario/Zotero/storage/8QATUX6Q/Névéol et al. - 2017 - CLEF eHealth 2017 Multilingual Information Extract.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/EV2SLCV8/Névéol et al. - 2017 - CLEF eHealth 2017 Multilingual Information Extract.pdf:application/pdf}
+}
+
+@inproceedings{miftakhutdinov_kfu_2017,
+	title = {Kfu at clef ehealth 2017 task 1: {Icd}-10 coding of english death certificates with recurrent neural networks},
+	booktitle = {{CLEF} 2017 {Online} {Working} {Notes}},
+	publisher = {CEUR-WS},
+	author = {Miftahutdinov, Zulfat and Tutubalina, Elena},
+	year = {2017},
+	keywords = {Read, CLEF, ICD-10-Classification},
+	file = {Fulltext:/Users/mario/Zotero/storage/HRZ6Q8Q6/Miftakhutdinov und Tutubalina - 2017 - Kfu at clef ehealth 2017 task 1 Icd-10 coding of .pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/J8TXTUNT/Miftakhutdinov und Tutubalina - 2017 - Kfu at clef ehealth 2017 task 1 Icd-10 coding of .pdf:application/pdf}
+}
+
+@inproceedings{goeuriot_clef_2017,
+	title = {Clef 2017 ehealth evaluation lab overview},
+	booktitle = {International {Conference} of the {Cross}-{Language} {Evaluation} {Forum} for {European} {Languages}},
+	publisher = {Springer},
+	author = {Goeuriot, Lorraine and Kelly, Liadh and Suominen, Hanna and Névéol, Aurélie and Robert, Aude and Kanoulas, Evangelos and Spijker, Rene and Palotti, Joao and Zuccon, Guido},
+	year = {2017},
+	keywords = {Read},
+	pages = {291--303},
+	file = {Fulltext:/Users/mario/Zotero/storage/EEAVXG89/Goeuriot et al. - 2017 - Clef 2017 ehealth evaluation lab overview.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/TMNBJ6YC/978-3-319-65813-1_26.html:text/html}
+}
+
+@inproceedings{mikolov_distributed_2013,
+	title = {Distributed representations of words and phrases and their compositionality},
+	booktitle = {Advances in neural information processing systems},
+	author = {Mikolov, Tomas and Sutskever, Ilya and Chen, Kai and Corrado, Greg S. and Dean, Jeff},
+	year = {2013},
+	keywords = {Embeddings, Read, Word Embeddings},
+	pages = {3111--3119},
+	file = {Fulltext:/Users/mario/Zotero/storage/Y7PKTLQX/Mikolov et al. - 2013 - Distributed representations of words and phrases a.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/8B9JIEQG/5021-distributed-representations-of-words-andphrases.html:text/html}
+}
+
+@article{mikolov_efficient_2013,
+	title = {Efficient estimation of word representations in vector space},
+	journal = {arXiv preprint arXiv:1301.3781},
+	author = {Mikolov, Tomas and Chen, Kai and Corrado, Greg and Dean, Jeffrey},
+	year = {2013},
+	keywords = {Embeddings, Read, Word Embeddings},
+	file = {Fulltext:/Users/mario/Zotero/storage/494A5KSG/Mikolov et al. - 2013 - Efficient estimation of word representations in ve.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/84YYF44Z/1301.html:text/html}
+}
+
+@inproceedings{pennington_glove_2014,
+	title = {Glove: {Global} vectors for word representation},
+	shorttitle = {Glove},
+	booktitle = {Proceedings of the 2014 conference on empirical methods in natural language processing ({EMNLP})},
+	author = {Pennington, Jeffrey and Socher, Richard and Manning, Christopher},
+	year = {2014},
+	keywords = {Read, Word Embeddings},
+	pages = {1532--1543},
+	file = {Fulltext:/Users/mario/Zotero/storage/24PDQ7AG/Pennington et al. - 2014 - Glove Global vectors for word representation.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/IX997EFR/Pennington et al. - 2014 - Glove Global vectors for word representation.pdf:application/pdf}
+}
+
+@article{butt_classification_2013,
+	title = {Classification of cancer-related death certificates using machine learning},
+	volume = {6},
+	issn = {1836-1935},
+	url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674421/},
+	doi = {10.4066/AMJ.2013.1654},
+	abstract = {Background
+Cancer monitoring and prevention relies on the critical aspect of timely notification of cancer cases. However, the abstraction and classification of cancer from the free-text of pathology reports and other relevant documents, such as death certificates, exist as complex and time-consuming activities.
+
+Aims
+In this paper, approaches for the automatic detection of notifiable cancer cases as the cause of death from free-text death certificates supplied to Cancer Registries are investigated.
+
+Method
+A number of machine learning classifiers were studied. Features were extracted using natural language techniques and the Medtex toolkit. The numerous features encompassed stemmed words, bi-grams, and concepts from the SNOMED CT medical terminology. The baseline consisted of a keyword spotter using keywords extracted from the long description of ICD-10 cancer related codes.
+
+Results
+Death certificates with notifiable cancer listed as the cause of death can be effectively identified with the methods studied in this paper. A Support Vector Machine (SVM) classifier achieved best performance with an overall Fmeasure of 0.9866 when evaluated on a set of 5,000 freetext death certificates using the token stem feature set. The SNOMED CT concept plus token stem feature set reached the lowest variance (0.0032) and false negative rate (0.0297) while achieving an F-measure of 0.9864. The SVM classifier accounts for the first 18 of the top 40 evaluated runs, and entails the most robust classifier with a variance of 0.001141, half the variance of the other classifiers.
+
+Conclusion
+The selection of features significantly produced the most influences on the performance of the classifiers, although the type of classifier employed also affects performance. In contrast, the feature weighting schema created a negligible effect on performance. Specifically, it is found that stemmed tokens with or without SNOMED CT concepts create the most effective feature when combined with an SVM classifier.},
+	number = {5},
+	urldate = {2018-03-16},
+	journal = {The Australasian Medical Journal},
+	author = {Butt, Luke and Zuccon, Guido and Nguyen, Anthony and Bergheim, Anton and Grayson, Narelle},
+	month = may,
+	year = {2013},
+	pmid = {23745151},
+	pmcid = {PMC3674421},
+	pages = {292--299},
+	file = {PubMed Central Full Text PDF:/Users/mario/Zotero/storage/ZCUHSCHR/Butt et al. - 2013 - Classification of cancer-related death certificate.pdf:application/pdf}
+}
+
+@article{koopman_automatic_2015,
+	title = {Automatic {ICD}-10 classification of cancers from free-text death certificates},
+	volume = {84},
+	issn = {1386-5056},
+	url = {http://www.sciencedirect.com/science/article/pii/S1386505615300289},
+	doi = {10.1016/j.ijmedinf.2015.08.004},
+	abstract = {Objective
+Death certificates provide an invaluable source for cancer mortality statistics; however, this value can only be realised if accurate, quantitative data can be extracted from certificates – an aim hampered by both the volume and variable nature of certificates written in natural language. This paper proposes an automatic classification system for identifying cancer related causes of death from death certificates.
+Methods
+Detailed features, including terms, n-grams and SNOMED CT concepts were extracted from a collection of 447,336 death certificates. These features were used to train Support Vector Machine classifiers (one classifier for each cancer type). The classifiers were deployed in a cascaded architecture: the first level identified the presence of cancer (i.e., binary cancer/nocancer) and the second level identified the type of cancer (according to the ICD-10 classification system). A held-out test set was used to evaluate the effectiveness of the classifiers according to precision, recall and F-measure. In addition, detailed feature analysis was performed to reveal the characteristics of a successful cancer classification model.
+Results
+The system was highly effective at identifying cancer as the underlying cause of death (F-measure 0.94). The system was also effective at determining the type of cancer for common cancers (F-measure 0.7). Rare cancers, for which there was little training data, were difficult to classify accurately (F-measure 0.12). Factors influencing performance were the amount of training data and certain ambiguous cancers (e.g., those in the stomach region). The feature analysis revealed a combination of features were important for cancer type classification, with SNOMED CT concept and oncology specific morphology features proving the most valuable.
+Conclusion
+The system proposed in this study provides automatic identification and characterisation of cancers from large collections of free-text death certificates. This allows organisations such as Cancer Registries to monitor and report on cancer mortality in a timely and accurate manner. In addition, the methods and findings are generally applicable beyond cancer classification and to other sources of medical text besides death certificates.},
+	number = {11},
+	urldate = {2018-03-16},
+	journal = {International Journal of Medical Informatics},
+	author = {Koopman, Bevan and Zuccon, Guido and Nguyen, Anthony and Bergheim, Anton and Grayson, Narelle},
+	month = nov,
+	year = {2015},
+	pages = {956--965},
+	file = {ScienceDirect Full Text PDF:/Users/mario/Zotero/storage/P8HLCZWK/Koopman et al. - 2015 - Automatic ICD-10 classification of cancers from fr.pdf:application/pdf;ScienceDirect Snapshot:/Users/mario/Zotero/storage/X3AKYDDI/S1386505615300289.html:text/html}
+}
+
+@article{turney_frequency_2010,
+	title = {From frequency to meaning: {Vector} space models of semantics},
+	volume = {37},
+	shorttitle = {From frequency to meaning},
+	journal = {Journal of artificial intelligence research},
+	author = {Turney, Peter D. and Pantel, Patrick},
+	year = {2010},
+	keywords = {Unread, Word Embeddings},
+	pages = {141--188},
+	file = {Snapshot:/Users/mario/Zotero/storage/9H8ZCIME/jair.html:text/html;Turney und Pantel - 2010 - From frequency to meaning Vector space models of .pdf:/Users/mario/Zotero/storage/8SPBC8M2/Turney und Pantel - 2010 - From frequency to meaning Vector space models of .pdf:application/pdf}
+}
+
+@article{collobert_natural_2011,
+	title = {Natural language processing (almost) from scratch},
+	volume = {12},
+	number = {Aug},
+	journal = {Journal of Machine Learning Research},
+	author = {Collobert, Ronan and Weston, Jason and Bottou, Léon and Karlen, Michael and Kavukcuoglu, Koray and Kuksa, Pavel},
+	year = {2011},
+	keywords = {Unread, Word Embeddings},
+	pages = {2493--2537},
+	file = {Fulltext:/Users/mario/Zotero/storage/H9VZDLXY/Collobert et al. - 2011 - Natural language processing (almost) from scratch.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/NATRPDG4/collobert11a.html:text/html}
+}
+
+@inproceedings{sutskever_sequence_2014,
+	title = {Sequence to sequence learning with neural networks},
+	booktitle = {Advances in neural information processing systems},
+	author = {Sutskever, Ilya and Vinyals, Oriol and Le, Quoc V.},
+	year = {2014},
+	pages = {3104--3112},
+	file = {Fulltext:/Users/mario/Zotero/storage/DVEL74Y2/Sutskever et al. - 2014 - Sequence to sequence learning with neural networks.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/WLQ9DD95/5346-sequence-to-sequence-learning-with-neural.html:text/html}
+}
+
+@book{hochreiter_gradient_2001,
+	title = {Gradient flow in recurrent nets: the difficulty of learning long-term dependencies},
+	shorttitle = {Gradient flow in recurrent nets},
+	publisher = {A field guide to dynamical recurrent neural networks. IEEE Press},
+	author = {Hochreiter, Sepp and Bengio, Yoshua and Frasconi, Paolo and Schmidhuber, Jürgen},
+	year = {2001},
+	file = {Fulltext:/Users/mario/Zotero/storage/3UDDZ4LG/Hochreiter et al. - 2001 - Gradient flow in recurrent nets the difficulty of.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/SU2LW7FM/Hochreiter et al. - 2001 - Gradient flow in recurrent nets the difficulty of.pdf:application/pdf}
+}
+
+@inproceedings{bahdanau_neural_2018,
+	title = {Neural machine translation by jointly learning to align and translate},
+	booktitle = {Proceedings of the 6th {International} {Conference} on {Learning} {Representations} ({ICLR} 2018)},
+	author = {Bahdanau, Dzmitry and Cho, Kyunghyun and Bengio, Yoshua},
+	year = {2018},
+	file = {Fulltext:/Users/mario/Zotero/storage/IS5LGCET/Bahdanau et al. - 2014 - Neural machine translation by jointly learning to .pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/GR2XHEZN/1409.html:text/html}
+}
+
+@incollection{bengio_scheduled_2015,
+	title = {Scheduled {Sampling} for {Sequence} {Prediction} with {Recurrent} {Neural} {Networks}},
+	urldate = {2018-05-18},
+	booktitle = {Advances in {Neural} {Information} {Processing} {Systems} 28},
+	publisher = {Curran Associates, Inc.},
+	author = {Bengio, Samy and Vinyals, Oriol and Jaitly, Navdeep and Shazeer, Noam},
+	year = {2015},
+	pages = {1171--1179},
+	file = {NIPS Full Text PDF:/Users/mario/Zotero/storage/D2B4JCFG/Bengio et al. - 2015 - Scheduled Sampling for Sequence Prediction with Re.pdf:application/pdf;NIPS Snapshort:/Users/mario/Zotero/storage/VDKFT7GD/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.html:text/html}
+}
+
+@inproceedings{lample_neural_2016,
+	title = {Neural {Architectures} for {Named} {Entity} {Recognition}},
+	booktitle = {Proceedings of the 15th {Annual} {Conference} of the {North} {American} {Chapter} of the {Association} for {Computational} {Linguistics}: {Human} {Language} {Technologies}},
+	author = {Lample, Guillaume and Ballesteros, Miguel and Subramanian, Sandeep and Kawakami, Kazuya and Dyer, Chris},
+	year = {2016},
+	pages = {260--270},
+	file = {Fulltext:/Users/mario/Zotero/storage/X563FD8L/Lample et al. - 2016 - Neural Architectures for Named Entity Recognition.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/53KXXTTJ/Lample et al. - 2016 - Neural Architectures for Named Entity Recognition.pdf:application/pdf}
+}
+
+@article{wei_disease_2016,
+	title = {Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks},
+	volume = {2016},
+	journal = {Database: The Journal of Biological Databases and Curation},
+	author = {Wei, Qikang and Chen, Tao and Xu, Ruifeng and He, Yulan and Gui, Lin},
+	year = {2016},
+	file = {Fulltext:/Users/mario/Zotero/storage/CCKZ2IWM/2630532.html:text/html;Snapshot:/Users/mario/Zotero/storage/KPKNC9SU/2630532.html:text/html}
+}
+
+@article{wang_part--speech_2015,
+	title = {Part-of-speech tagging with bidirectional long short-term memory recurrent neural network},
+	journal = {arXiv preprint arXiv:1510.06168},
+	author = {Wang, Peilu and Qian, Yao and Soong, Frank K. and He, Lei and Zhao, Hai},
+	year = {2015},
+	file = {Fulltext:/Users/mario/Zotero/storage/5GR6JJQC/Wang et al. - 2015 - Part-of-speech tagging with bidirectional long sho.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/F2FE38ZX/1510.html:text/html}
+}
+
+@inproceedings{dyer_transition-based_2015,
+	title = {Transition-{Based} {Dependency} {Parsing} with {Stack} {Long} {Short}-{Term} {Memory}},
+	volume = {1},
+	booktitle = {Proceedings of the 53rd {Annual} {Meeting} of the {Association} for {Computational} {Linguistics} and the 7th {International} {Joint} {Conference} on {Natural} {Language} {Processing} ({Volume} 1: {Long} {Papers})},
+	author = {Dyer, Chris and Ballesteros, Miguel and Ling, Wang and Matthews, Austin and Smith, Noah A.},
+	year = {2015},
+	pages = {334--343},
+	file = {Fulltext:/Users/mario/Zotero/storage/USKW6L5G/Dyer et al. - 2015 - Transition-Based Dependency Parsing with Stack Lon.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/ZYCTTDQF/Dyer et al. - 2015 - Transition-Based Dependency Parsing with Stack Lon.pdf:application/pdf}
+}
+
+@article{bengio_learning_1994,
+	title = {Learning long-term dependencies with gradient descent is difficult},
+	volume = {5},
+	number = {2},
+	journal = {IEEE transactions on neural networks},
+	author = {Bengio, Yoshua and Simard, Patrice and Frasconi, Paolo},
+	year = {1994},
+	pages = {157--166},
+	file = {Fulltext:/Users/mario/Zotero/storage/NSQD4YZI/Bengio et al. - 1994 - Learning long-term dependencies with gradient desc.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/XM3MMQTY/279181.html:text/html}
+}
+
+@article{hochreiter_long_1997,
+	title = {Long short-term memory},
+	volume = {9},
+	number = {8},
+	journal = {Neural computation},
+	author = {Hochreiter, Sepp and Schmidhuber, Jürgen},
+	year = {1997},
+	pages = {1735--1780},
+	file = {Fulltext:/Users/mario/Zotero/storage/XVFURMYQ/Hochreiter und Schmidhuber - 1997 - Long short-term memory.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/BA5KN5ZW/neco.1997.9.8.html:text/html}
+}
+
+@inproceedings{raffel_feed-forward_2016,
+	title = {Feed-forward networks with attention can solve some long-term memory problems},
+	booktitle = {Workshop {Extended} {Abstracts} of the 4th {International} {Conference} on {Learning} {Representations}},
+	author = {Raffel, Colin and Ellis, Daniel PW},
+	year = {2016},
+	file = {Fulltext:/Users/mario/Zotero/storage/V3UB65AD/Raffel und Ellis - 2015 - Feed-forward networks with attention can solve som.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/66LDNKRG/1512.html:text/html}
+}
+
+@inproceedings{suominen_overview_2018,
+	series = {Lecture {Notes} in {Computer} {Science} ({LNCS})},
+	title = {Overview of the {CLEF} {eHealth} {Evaluation} {Lab} 2018},
+	booktitle = {{CLEF} 2018 - 8th {Conference} and {Labs} of the {Evaluation} {Forum}},
+	publisher = {Springer},
+	author = {Suominen, Hanna and Kelly, Liadh and Goeuriot, Lorraine and Kanoulas, Evangelos and Azzopardi, Leif and Spijker, Rene and Li, Dan and Névéol, Aurélie and Ramadier, Lionel and Robert, Aude and Zuccon, Guido and Palotti, Joao},
+	year = {2018}
+}
+
+@inproceedings{neveol_clef_2018,
+	title = {{CLEF} {eHealth} 2018 {Multilingual} {Information} {Extraction} task {Overview}: {ICD}10 {Coding} of {Death} {Certificates} in {French}, {Hungarian}  and {Italian}},
+	booktitle = {{CLEF} 2018 {Evaluation} {Labs} and {Workshop}: {Online} {Working} {Notes}},
+	publisher = {CEUR-WS},
+	author = {Névéol, Aurélie and Robert, Aude and Grippo, F and Morgand, C and Orsi, C and Pelikán, L and Ramadier, Lionel and Rey, Grégoire and Zweigenbaum, Pierre},
+	year = {2018},
+	month = {September}
+}
+
+@inproceedings{cho_learning_2014,
+	address = {Doha, Qatar},
+	title = {Learning {Phrase} {Representations} using {RNN} {Encoder}–{Decoder} for {Statistical} {Machine} {Translation}},
+	urldate = {2018-05-23},
+	booktitle = {Proceedings of the 2014 {Conference} on {Empirical} {Methods} in {Natural} {Language} {Processing} ({EMNLP})},
+	publisher = {Association for Computational Linguistics},
+	author = {Cho, Kyunghyun and van Merrienboer, Bart and Gulcehre, Caglar and Bahdanau, Dzmitry and Bougares, Fethi and Schwenk, Holger and Bengio, Yoshua},
+	month = {October},
+	year = {2014},
+	pages = {1724--1734},
+	file = {Full Text PDF:/Users/mario/Zotero/storage/4NE9THT8/Cho et al. - 2014 - Learning Phrase Representations using RNN Encoder–.pdf:application/pdf}
+}
+
+@article{neveol_clinical_2016,
+	title = {Clinical {Information} {Extraction} at the {CLEF} {eHealth} {Evaluation} lab 2016},
+	volume = {1609},
+	issn = {1613-0073},
+	abstract = {This paper reports on Task 2 of the 2016 CLEF eHealth evaluation lab which extended the previous information extraction tasks of ShARe/CLEF eHealth evaluation labs. The task continued with named entity recognition and normalization in French narratives, as offered in CLEF eHealth 2015. Named entity recognition involved ten types of entities including disorders that were defined according to Semantic Groups in the Unified Medical Language System® (UMLS®), which was also used for normalizing the entities. In addition, we introduced a large-scale classification task in French death certificates, which consisted of extracting causes of death as coded in the International Classification of Diseases, tenth revision (ICD10). Participant systems were evaluated against a blind reference standard of 832 titles of scientific articles indexed in MEDLINE, 4 drug monographs published by the European Medicines Agency (EMEA) and 27,850 death certificates using Precision, Recall and F-measure. In total, seven teams participated, including five in the entity recognition and normalization task, and five in the death certificate coding task. Three teams submitted their systems to our newly offered reproducibility track. For entity recognition, the highest performance was achieved on the EMEA corpus, with an overall F-measure of 0.702 for plain entities recognition and 0.529 for normalized entity recognition. For entity normalization, the highest performance was achieved on the MEDLINE corpus, with an overall F-measure of 0.552. For death certificate coding, the highest performance was 0.848 F-measure.},
+	urldate = {2018-05-23},
+	journal = {CEUR workshop proceedings},
+	author = {Névéol, Aurélie and Cohen, K. Bretonnel and Grouin, Cyril and Hamon, Thierry and Lavergne, Thomas and Kelly, Liadh and Goeuriot, Lorraine and Rey, Grégoire and Robert, Aude and Tannier, Xavier and Zweigenbaum, Pierre},
+	month = {September},
+	year = {2016},
+	pmid = {29308065},
+	pmcid = {PMC5756095},
+	pages = {28--42},
+	file = {PubMed Central Full Text PDF:/Users/mario/Zotero/storage/ZWWRZSZK/Névéol et al. - 2016 - Clinical Information Extraction at the CLEF eHealt.pdf:application/pdf}
+}
+
+@inproceedings{di_nunzio_lexicon_2017,
+	title = {A {Lexicon} {Based} {Approach} to {Classification} of {ICD}10 {Codes}. {IMS} {Unipd} at {CLEF} {eHealth} {Task}},
+	booktitle = {{CLEF} 2017 {Online} {Working} {Notes}},
+	publisher = {CEUR-WS},
+	author = {Di Nunzio, Giorgio Maria and Beghini, Federica and Vezzani, Federica and Henrot, Genevieve},
+	year = {2017},
+	file = {Fulltext:/Users/mario/Zotero/storage/HGHINDH3/Di Nunzio et al. - A Lexicon Based Approach to Classification of ICD1.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/LWSDB84Q/Di Nunzio et al. - A Lexicon Based Approach to Classification of ICD1.pdf:application/pdf}
+}
+
+@inproceedings{cabot_sibm_2016,
+	title = {{SIBM} at {CLEF} {eHealth} {Evaluation} {Lab} 2016: {Extracting} {Concepts} in {French} {Medical} {Texts} with {ECMT} and {CIMIND}},
+	booktitle = {{CLEF} 2015 {Online} {Working} {Notes}},
+	publisher = {CEUR-WS},
+	author = {Cabot, Chloé and Soualmia, Lina F. and Dahamna, Badisse and Darmoni, Stéfan J.},
+	year = {2016},
+	file = {Fulltext:/Users/mario/Zotero/storage/E4ZADEMU/Cabot et al. - SIBM at CLEF eHealth Evaluation Lab 2016 Extracti.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/C9ADYETR/Cabot et al. - SIBM at CLEF eHealth Evaluation Lab 2016 Extracti.pdf:application/pdf}
+}
+
+@inproceedings{van_mulligen_erasmus_2016,
+	title = {Erasmus {MC} at {CLEF} {eHealth} 2016: {Concept} {Recognition} and {Coding} in {French} {Texts}},
+	shorttitle = {Erasmus {MC} at {CLEF} {eHealth} 2016},
+	booktitle = {{CLEF} 2016 {Online} {Working} {Notes}},
+	publisher = {CEUR-WS},
+	author = {van Mulligen, Erik M. and Afzal, Zubair and Akhondi, Saber A. and Vo, Dang and Kors, Jan A.},
+	year = {2016},
+	file = {Fulltext:/Users/mario/Zotero/storage/AT3LSRP4/van Mulligen et al. - Erasmus MC at CLEF eHealth 2016 Concept Recogniti.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/5NNCIN2V/van Mulligen et al. - Erasmus MC at CLEF eHealth 2016 Concept Recogniti.pdf:application/pdf}
+}
+
+@inproceedings{mottin_bitem_2016,
+	title = {{BiTeM} at {CLEF} {eHealth} {Evaluation} {Lab} 2016 {Task} 2: {Multilingual} {Information} {Extraction}.},
+	booktitle = {{CLEF} 2016 {Online} {Working} {Notes}},
+	publisher = {CEUR-WS},
+	author = {Mottin, Luc and Gobeill, Julien and Mottaz, Anaïs and Pasche, Emilie and Gaudinat, Arnaud and Ruch, Patrick},
+	year = {2016},
+	file = {Fulltext:/Users/mario/Zotero/storage/LF9UGCQZ/Mottin et al. - 2016 - BiTeM at CLEF eHealth Evaluation Lab 2016 Task 2 .pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/BRRDY3TV/Mottin et al. - 2016 - BiTeM at CLEF eHealth Evaluation Lab 2016 Task 2 .pdf:application/pdf}
+}
+
+@inproceedings{jonnagaddala_automatic_2017,
+	title = {Automatic coding of death certificates to {ICD}-10 terminology},
+	booktitle = {{CLEF} 2017 {Online} {Working} {Notes}},
+	publisher = {CEUR-WS},
+	author = {Jonnagaddala, Jitendra and Hu, Feiyan},
+	year = {2017},
+	file = {Fulltext:/Users/mario/Zotero/storage/AW2YGWHC/Jonnagaddala und Hu - Automatic coding of death certificates to ICD-10 t.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/VHWNWWPC/Jonnagaddala und Hu - Automatic coding of death certificates to ICD-10 t.pdf:application/pdf}
+}
+
+@inproceedings{ho-dac_litl_2017,
+	title = {{LITL} at {CLEF} {eHealth}2017: automatic classification of death reports},
+	booktitle = {{CLEF} 2017 {Online} {Working} {Notes}},
+	publisher = {CEUR-WS},
+	author = {Ho-Dac, Lydia-Mai and Fabre, Cécile and Birski, Anouk and Boudraa, Imane and Bourriot, Aline and Cassier, Manon and Delvenne, Léa and Garcia-Gonzalez, Charline and Kang, Eun-Bee and Piccinini, Elisa},
+	year = {2017},
+	file = {Fulltext:/Users/mario/Zotero/storage/N2Q47RVL/Ho-Dac et al. - LITL at CLEF eHealth2017 automatic classification.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/D5T3NUAR/Ho-Dac et al. - LITL at CLEF eHealth2017 automatic classification.pdf:application/pdf}
+}
+
+@inproceedings{ho-dac_litl_2016,
+	title = {{LITL} at {CLEF} {eHealth}2016: recognizing entities in {French} biomedical documents},
+	booktitle = {{CLEF} 2016 {Online} {Working} {Notes}},
+	publisher = {CEUR-WS},
+	author = {Ho-Dac, Lydia-Mai and Tanguy, Ludovic and Grauby, Céline and Mby, Aurore Heu and Malosse, Justine and Rivière, Laura and Veltz-Mauclair, Amélie},
+	year = {2016},
+	file = {Fulltext:/Users/mario/Zotero/storage/9YCE3EVM/Ho-Dac et al. - LITL at CLEF eHealth2016 recognizing entities in .pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/I6YEA4ZT/Ho-Dac et al. - LITL at CLEF eHealth2016 recognizing entities in .pdf:application/pdf}
+}
+
+@inproceedings{dermouche_ecstra-inserm_2016,
+	title = {{ECSTRA}-{INSERM}@ {CLEF} {eHealth}2016-task 2: {ICD}10 {Code} {Extraction} from {Death} {Certificates}},
+	booktitle = {{CLEF} 2016 {Online} {Working} {Notes}},
+	author = {Dermouche, Mohamed and Looten, Vincent and Flicoteaux, Rémi and Chevret, Sylvie and Velcin, Julien and Taright, Namik},
+	year = {2016},
+	file = {Fulltext:/Users/mario/Zotero/storage/WVDFQFEK/Dermouche et al. - ECSTRA-INSERM@ CLEF eHealth2016-task 2 ICD10 Code.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/RIMPEW8L/Dermouche et al. - ECSTRA-INSERM@ CLEF eHealth2016-task 2 ICD10 Code.pdf:application/pdf}
+}
+
+@inproceedings{ebersbach_fusion_2017,
+	title = {Fusion {Methods} for {ICD}10 {Code} {Classification} of {Death} {Certificates} in {Multilingual} {Corpora}},
+	booktitle = {{CLEF} 2017 {Online} {Working} {Notes}},
+	publisher = {CEUR-WS},
+	author = {Ebersbach, Mike and Herms, Robert and Eibl, Maximilian},
+	year = {2017},
+	file = {Fulltext:/Users/mario/Zotero/storage/LKIZA2P4/Ebersbach et al. - 2017 - Fusion Methods for ICD10 Code Classification of De.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/CIX48RIC/Ebersbach et al. - 2017 - Fusion Methods for ICD10 Code Classification of De.pdf:application/pdf}
+}
+
+@inproceedings{xu_show_2015,
+	title = {Show, attend and tell: {Neural} image caption generation with visual attention},
+	shorttitle = {Show, attend and tell},
+	booktitle = {International {Conference} on {Machine} {Learning}},
+	author = {Xu, Kelvin and Ba, Jimmy and Kiros, Ryan and Cho, Kyunghyun and Courville, Aaron and Salakhudinov, Ruslan and Zemel, Rich and Bengio, Yoshua},
+	year = {2015},
+	pages = {2048--2057},
+	file = {Fulltext:/Users/mario/Zotero/storage/QASCM4G3/Xu et al. - 2015 - Show, attend and tell Neural image caption genera.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/VILIPKYC/Xu et al. - 2015 - Show, attend and tell Neural image caption genera.pdf:application/pdf}
+}
+
+@inproceedings{chan_listen_2016,
+	title = {Listen, attend and spell: {A} neural network for large vocabulary conversational speech recognition},
+	shorttitle = {Listen, attend and spell},
+	booktitle = {Acoustics, {Speech} and {Signal} {Processing} ({ICASSP}), 2016 {IEEE} {International} {Conference} on},
+	publisher = {IEEE},
+	author = {Chan, William and Jaitly, Navdeep and Le, Quoc and Vinyals, Oriol},
+	year = {2016},
+	pages = {4960--4964},
+	file = {Fulltext:/Users/mario/Zotero/storage/ZV5B2GQJ/Chan et al. - 2016 - Listen, attend and spell A neural network for lar.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/RS8MBCM8/7472621.html:text/html}
+}
+
+@inproceedings{vinyals_show_2015,
+	title = {Show and tell: {A} neural image caption generator},
+	shorttitle = {Show and tell},
+	booktitle = {Computer {Vision} and {Pattern} {Recognition} ({CVPR}), 2015 {IEEE} {Conference} on},
+	publisher = {IEEE},
+	author = {Vinyals, Oriol and Toshev, Alexander and Bengio, Samy and Erhan, Dumitru},
+	year = {2015},
+	pages = {3156--3164},
+	file = {Fulltext:/Users/mario/Zotero/storage/YYYDMHJD/Vinyals et al. - 2015 - Show and tell A neural image caption generator.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/XQBCTX6S/Vinyals et al. - 2015 - Show and tell A neural image caption generator.pdf:application/pdf}
+}
+
+@inproceedings{faruqui_improving_2014,
+	title = {Improving vector space word representations using multilingual correlation},
+	booktitle = {Proceedings of the 14th {Conference} of the {European} {Chapter} of the {Association} for {Computational} {Linguistics}},
+	author = {Faruqui, Manaal and Dyer, Chris},
+	year = {2014},
+	pages = {462--471},
+	file = {Fulltext:/Users/mario/Zotero/storage/8X3ZWRRV/Faruqui und Dyer - 2014 - Improving vector space word representations using .pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/9TNA35WS/Faruqui und Dyer - 2014 - Improving vector space word representations using .pdf:application/pdf}
+}
+
+@inproceedings{vyas_sparse_2016,
+	title = {Sparse bilingual word representations for cross-lingual lexical entailment},
+	booktitle = {Proceedings of the 2016 {Conference} of the {North} {American} {Chapter} of the {Association} for {Computational} {Linguistics}: {Human} {Language} {Technologies}},
+	author = {Vyas, Yogarshi and Carpuat, Marine},
+	year = {2016},
+	pages = {1187--1197},
+	file = {Fulltext:/Users/mario/Zotero/storage/WK4I4EGG/Vyas und Carpuat - 2016 - Sparse bilingual word representations for cross-li.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/A9SJS6LH/Vyas und Carpuat - 2016 - Sparse bilingual word representations for cross-li.pdf:application/pdf}
+}
+
+@inproceedings{pham_learning_2015,
+	title = {Learning distributed representations for multilingual text sequences},
+	booktitle = {Proceedings of the 1st {Workshop} on {Vector} {Space} {Modeling} for {Natural} {Language} {Processing}},
+	author = {Pham, Hieu and Luong, Thang and Manning, Christopher},
+	year = {2015},
+	pages = {88--94},
+	file = {Fulltext:/Users/mario/Zotero/storage/CF3JNTCK/Pham et al. - 2015 - Learning distributed representations for multiling.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/8STRAYTS/Pham et al. - 2015 - Learning distributed representations for multiling.pdf:application/pdf}
+}
+
+@article{vulic_bilingual_2016,
+	title = {Bilingual distributed word representations from document-aligned comparable data},
+	volume = {55},
+	journal = {Journal of Artificial Intelligence Research},
+	author = {Vulić, Ivan and Moens, Marie-Francine},
+	year = {2016},
+	pages = {953--994},
+	file = {Fulltext:/Users/mario/Zotero/storage/DF26LCTD/Vulić und Moens - 2016 - Bilingual distributed word representations from do.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/UN3RUE5Y/10997.html:text/html}
+}
+
+@inproceedings{xing_normalized_2015,
+	title = {Normalized word embedding and orthogonal transform for bilingual word translation},
+	booktitle = {Proceedings of the 2015 {Conference} of the {North} {American} {Chapter} of the {Association} for {Computational} {Linguistics}: {Human} {Language} {Technologies}},
+	author = {Xing, Chao and Wang, Dong and Liu, Chao and Lin, Yiye},
+	year = {2015},
+	pages = {1006--1011},
+	file = {Fulltext:/Users/mario/Zotero/storage/W6XGG8LG/Xing et al. - 2015 - Normalized word embedding and orthogonal transform.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/TKYHHWZZ/Xing et al. - 2015 - Normalized word embedding and orthogonal transform.pdf:application/pdf}
+}
+
+@inproceedings{guo_cross-lingual_2015,
+	title = {Cross-lingual dependency parsing based on distributed representations},
+	volume = {1},
+	booktitle = {Proceedings of the 53rd {Annual} {Meeting} of the {Association} for {Computational} {Linguistics} and the 7th {International} {Joint} {Conference} on {Natural} {Language} {Processing} ({Volume} 1: {Long} {Papers})},
+	author = {Guo, Jiang and Che, Wanxiang and Yarowsky, David and Wang, Haifeng and Liu, Ting},
+	year = {2015},
+	pages = {1234--1244},
+	file = {Fulltext:/Users/mario/Zotero/storage/D6Q9WBXY/Guo et al. - 2015 - Cross-lingual dependency parsing based on distribu.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/K8NNEQ6H/Guo et al. - 2015 - Cross-lingual dependency parsing based on distribu.pdf:application/pdf}
+}
+
+@inproceedings{sogaard_inverted_2015,
+	title = {Inverted indexing for cross-lingual {NLP}},
+	booktitle = {The 53rd {Annual} {Meeting} of the {Association} for {Computational} {Linguistics} and the 7th {International} {Joint} {Conference} of the {Asian} {Federation} of {Natural} {Language} {Processing} ({ACL}-{IJCNLP} 2015)},
+	author = {Søgaard, Anders and Agić, Zeljko and Alonso, Héctor Martínez and Plank, Barbara and Bohnet, Bernd and Johannsen, Anders},
+	year = {2015},
+	file = {Fulltext:/Users/mario/Zotero/storage/UZN66Q7M/Søgaard et al. - 2015 - Inverted indexing for cross-lingual NLP.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/26MECM8N/Søgaard et al. - 2015 - Inverted indexing for cross-lingual NLP.pdf:application/pdf}
+}
+
+@article{bojanowski_enriching_2017,
+	title = {Enriching {Word} {Vectors} with {Subword} {Information}},
+	volume = {5},
+	number = {1},
+	journal = {Transactions of the Association of Computational Linguistics},
+	author = {Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas},
+	year = {2017},
+	pages = {135--146},
+	file = {Fulltext:/Users/mario/Zotero/storage/ZMHFQUNA/Bojanowski et al. - 2017 - Enriching Word Vectors with Subword Information.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/USMIEAEL/Bojanowski et al. - 2017 - Enriching Word Vectors with Subword Information.pdf:application/pdf}
+}
+
+@inproceedings{kingma_adam:_2014,
+	title = {Adam: {A} method for stochastic optimization},
+	booktitle = {Proceedings of the 3rd {International} {Conference} on {Learning} {Representations} ({ICLR})},
+	author = {Kingma, Diederik P. and Ba, Jimmy},
+	year = {2014},
+	file = {Fulltext:/Users/mario/Zotero/storage/A9DC95XN/Kingma und Ba - 2014 - Adam A method for stochastic optimization.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/4CQAFF7H/1412.html:text/html}
+}
+
+@inproceedings{peters_semi-supervised_2017,
+	title = {Semi-supervised sequence tagging with bidirectional language models},
+	volume = {1},
+	booktitle = {Proceedings of the 55th {Annual} {Meeting} of the {Association} for {Computational} {Linguistics} ({Volume} 1: {Long} {Papers})},
+	author = {Peters, Matthew and Ammar, Waleed and Bhagavatula, Chandra and Power, Russell},
+	year = {2017},
+	pages = {1756--1765},
+	file = {Fulltext:/Users/mario/Zotero/storage/UQYRUUBQ/Peters et al. - 2017 - Semi-supervised sequence tagging with bidirectiona.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/PJ2YN7VR/Peters et al. - 2017 - Semi-supervised sequence tagging with bidirectiona.pdf:application/pdf}
+}
+
+@inproceedings{pinter_mimicking_2017,
+	title = {Mimicking {Word} {Embeddings} using {Subword} {RNNs}},
+	booktitle = {Proceedings of the 2017 {Conference} on {Empirical} {Methods} in {Natural} {Language} {Processing}},
+	author = {Pinter, Yuval and Guthrie, Robert and Eisenstein, Jacob},
+	year = {2017},
+	pages = {102--112},
+	file = {Fulltext:/Users/mario/Zotero/storage/QY3T7DCJ/Pinter et al. - 2017 - Mimicking Word Embeddings using Subword RNNs.pdf:application/pdf;Snapshot:/Users/mario/Zotero/storage/MD8TGGLY/Pinter et al. - 2017 - Mimicking Word Embeddings using Subword RNNs.pdf:application/pdf}
+}
\ No newline at end of file
diff --git a/paper/wbi-eclef18.aux b/paper/wbi-eclef18.aux
new file mode 100644
index 0000000000000000000000000000000000000000..548a406228fcc59fe1b8ca54d27813ca3b543c7b
--- /dev/null
+++ b/paper/wbi-eclef18.aux
@@ -0,0 +1,134 @@
+\relax 
+\providecommand\hyper@newdestlabel[2]{}
+\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
+\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
+\global\let\oldcontentsline\contentsline
+\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
+\global\let\oldnewlabel\newlabel
+\gdef\newlabel#1#2{\newlabelxx{#1}#2}
+\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
+\AtEndDocument{\ifx\hyper@anchor\@undefined
+\let\contentsline\oldcontentsline
+\let\newlabel\oldnewlabel
+\fi}
+\fi}
+\global\let\hyper@last\relax 
+\gdef\HyperFirstAtBeginDocument#1{#1}
+\providecommand\HyField@AuxAddToFields[1]{}
+\providecommand\HyField@AuxAddToCoFields[2]{}
+\citation{suominen_overview_2018}
+\citation{neveol_clef_2018}
+\select@language{english}
+\@writefile{toc}{\select@language{english}}
+\@writefile{lof}{\select@language{english}}
+\@writefile{lot}{\select@language{english}}
+\@writefile{toc}{\contentsline {title}{WBI at CLEF eHealth 2018 Task 1: Language-independent ICD-10 coding using multi-lingual embeddings and recurrent neural networks}{1}{chapter.1}}
+\@writefile{toc}{\authcount {3}}
+\@writefile{toc}{\contentsline {author}{Jurica \v {S}eva \and Mario S\IeC {\"a}nger \and Ulf Leser}{1}{chapter.1}}
+\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1.1}}
+\citation{cho_learning_2014,lample_neural_2016,dyer_transition-based_2015}
+\citation{miftakhutdinov_kfu_2017}
+\citation{bahdanau_neural_2018,cho_learning_2014}
+\citation{bengio_scheduled_2015}
+\citation{lample_neural_2016,wei_disease_2016}
+\citation{dyer_transition-based_2015}
+\citation{wang_part--speech_2015}
+\@writefile{toc}{\contentsline {section}{\numberline {2}Related work}{2}{section.1.2}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Recurrent neural networks (RNN)}{2}{subsection.1.2.1}}
+\citation{hochreiter_gradient_2001,bengio_learning_1994}
+\citation{hochreiter_long_1997}
+\citation{cho_learning_2014}
+\citation{turney_frequency_2010}
+\citation{collobert_natural_2011}
+\citation{bojanowski_enriching_2017,mikolov_distributed_2013,pennington_glove_2014,peters_deep_2018}
+\citation{peters_semi-supervised_2017,peters_deep_2018,pinter_mimicking_2017}
+\citation{mikolov_efficient_2013,mikolov_distributed_2013}
+\citation{pennington_glove_2014}
+\citation{peters_deep_2018}
+\citation{pinter_mimicking_2017}
+\citation{bojanowski_enriching_2017}
+\citation{faruqui_improving_2014,xing_normalized_2015}
+\citation{guo_cross-lingual_2015,vyas_sparse_2016}
+\citation{pham_learning_2015}
+\citation{sogaard_inverted_2015}
+\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Word Embeddings}{3}{subsection.1.2.2}}
+\citation{neveol_clinical_2016}
+\citation{neveol_clef_2017}
+\citation{cabot_sibm_2016,jonnagaddala_automatic_2017,van_mulligen_erasmus_2016}
+\citation{dermouche_ecstra-inserm_2016,ebersbach_fusion_2017,ho-dac_litl_2016,miftakhutdinov_kfu_2017}
+\citation{di_nunzio_lexicon_2017}
+\citation{ho-dac_litl_2017}
+\citation{ho-dac_litl_2016}
+\citation{dermouche_ecstra-inserm_2016}
+\citation{ebersbach_fusion_2017}
+\citation{miftakhutdinov_kfu_2017}
+\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}ICD-10 Classification}{4}{subsection.1.2.3}}
+\@writefile{toc}{\contentsline {section}{\numberline {3}Methods}{4}{section.1.3}}
+\newlabel{sec:methods}{{3}{4}{Methods}{section.1.3}{}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Death Cause Extraction Model}{4}{subsection.1.3.1}}
+\citation{sutskever_sequence_2014}
+\citation{bojanowski_enriching_2017}
+\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Illustration of the encoder-decoder model for death cause extraction. The encoder processes a death certificate line token-wise from left to right. The final state of the encoder forms a semantic representation of the line and serves as initial input for the decoding process. The decoder will be trained to predict the death cause text from the provided ICD-10 dictionaries word by word (using special tags \textbackslash s and \textbackslash e for start resp. end of a sequence). All input tokens will be represented using the concatenation of the fastText embeddings of all three languages.}}{5}{figure.1.1}}
+\newlabel{fig:encoder_decoder}{{1}{5}{Illustration of the encoder-decoder model for death cause extraction. The encoder processes a death certificate line token-wise from left to right. The final state of the encoder forms a semantic representation of the line and serves as initial input for the decoding process. The decoder will be trained to predict the death cause text from the provided ICD-10 dictionaries word by word (using special tags \textbackslash s and \textbackslash e for start resp. end of a sequence). All input tokens will be represented using the concatenation of the fastText embeddings of all three languages}{figure.1.1}{}}
+\citation{raffel_feed-forward_2016}
+\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}ICD-10 Classification Model}{6}{subsection.1.3.2}}
+\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Illustration of the ICD-10 classification model. The model utilizes a bi-directional LSTM layer, which processes the death cause from left to right and vice versa. The attention layer summarizes the whole description by computing an adaptive weighted average over the LSTM states. The resulting death cause embedding will be feed through a softmax layer to get the final classification. Equivalent to our encoder-decoder model all input tokens will be represented using the concatenation of the fastText embeddings of all three languages.}}{6}{figure.1.2}}
+\newlabel{fig:classification-model}{{2}{6}{Illustration of the ICD-10 classification model. The model utilizes a bi-directional LSTM layer, which processes the death cause from left to right and vice versa. The attention layer summarizes the whole description by computing an adaptive weighted average over the LSTM states. The resulting death cause embedding will be feed through a softmax layer to get the final classification. Equivalent to our encoder-decoder model all input tokens will be represented using the concatenation of the fastText embeddings of all three languages}{figure.1.2}{}}
+\citation{kingma_adam:_2014}
+\@writefile{toc}{\contentsline {section}{\numberline {4}Experiments and Results}{7}{section.1.4}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Training Data and Experiment Setup}{7}{subsection.1.4.1}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Death cause extraction model}{7}{subsection.1.4.2}}
+\newlabel{tab:s2s}{{4.2}{8}{Death cause extraction model}{subsection.1.4.2}{}}
+\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Experiment results of our death cause extraction sequence-to-sequence model concerning balanced (equal number of training instances per language) and full data set setting.}}{8}{table.1.1}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}ICD-10 Classification Model}{8}{subsection.1.4.3}}
+\newlabel{tab:icd10Classification}{{4.3}{9}{ICD-10 Classification Model}{subsection.1.4.3}{}}
+\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Experiment results for our ICD-10 classification model regarding different data settings. The \textit  {Minimal} setting uses only ICD-10 codes with two or more training instances in the supplied dictionary. In contrast, \textit  {Extended} additionally takes the diagnosis texts from the certificate data and duplicates ICD-10 training instances with only one diagnosis text in the dictionary and certificate lines. \textbf  {*} Used in final pipeline.}}{9}{table.1.2}}
+\@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Complete Pipeline}{9}{subsection.1.4.4}}
+\newlabel{tab:final_train}{{4.4}{9}{Complete Pipeline}{subsection.1.4.4}{}}
+\@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Evaluation results of the final pipeline on the validation set of the training data. Reported figures represent the prevalence-weighted macro-average across the output classes. Final-Balanced = DCEM-Balanced + ICD-10\_Extended. Final-Full = DCEM-Full + ICD-10\_Extended}}{10}{table.1.3}}
+\@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Test results of the final pipeline. Final-Balanced = DCEM-Balanced + ICD-10\_Extended. Final-Full = DCEM-Full + ICD-10\_Extended}}{11}{table.1.4}}
+\newlabel{tab:final_test}{{4}{11}{Test results of the final pipeline. Final-Balanced = DCEM-Balanced + ICD-10\_Extended. Final-Full = DCEM-Full + ICD-10\_Extended}{table.1.4}{}}
+\@writefile{toc}{\contentsline {section}{\numberline {5}Conclusion and Future Work}{11}{section.1.5}}
+\bibdata{references}
+\bibcite{bahdanau_neural_2018}{1}
+\bibcite{bengio_scheduled_2015}{2}
+\bibcite{bengio_learning_1994}{3}
+\bibcite{bojanowski_enriching_2017}{4}
+\bibcite{cabot_sibm_2016}{5}
+\bibcite{cho_learning_2014}{6}
+\bibcite{collobert_natural_2011}{7}
+\bibcite{dermouche_ecstra-inserm_2016}{8}
+\bibcite{di_nunzio_lexicon_2017}{9}
+\bibcite{dyer_transition-based_2015}{10}
+\bibcite{ebersbach_fusion_2017}{11}
+\bibcite{faruqui_improving_2014}{12}
+\bibcite{guo_cross-lingual_2015}{13}
+\bibcite{ho-dac_litl_2017}{14}
+\bibcite{ho-dac_litl_2016}{15}
+\bibcite{hochreiter_gradient_2001}{16}
+\bibcite{hochreiter_long_1997}{17}
+\bibcite{jonnagaddala_automatic_2017}{18}
+\bibcite{kingma_adam:_2014}{19}
+\bibcite{lample_neural_2016}{20}
+\bibcite{miftakhutdinov_kfu_2017}{21}
+\bibcite{mikolov_efficient_2013}{22}
+\bibcite{mikolov_distributed_2013}{23}
+\bibcite{van_mulligen_erasmus_2016}{24}
+\bibcite{neveol_clef_2017}{25}
+\bibcite{neveol_clinical_2016}{26}
+\bibcite{neveol_clef_2018}{27}
+\bibcite{pennington_glove_2014}{28}
+\bibcite{peters_semi-supervised_2017}{29}
+\bibcite{peters_deep_2018}{30}
+\bibcite{pham_learning_2015}{31}
+\bibcite{pinter_mimicking_2017}{32}
+\bibcite{raffel_feed-forward_2016}{33}
+\bibcite{suominen_overview_2018}{34}
+\bibcite{sutskever_sequence_2014}{35}
+\bibcite{sogaard_inverted_2015}{36}
+\bibcite{turney_frequency_2010}{37}
+\bibcite{vyas_sparse_2016}{38}
+\bibcite{wang_part--speech_2015}{39}
+\bibcite{wei_disease_2016}{40}
+\bibcite{xing_normalized_2015}{41}
+\bibstyle{splncs04}
diff --git a/paper/wbi-eclef18.bbl b/paper/wbi-eclef18.bbl
new file mode 100644
index 0000000000000000000000000000000000000000..2d76d336f6124f715280cafbaf4293c7f853fad2
--- /dev/null
+++ b/paper/wbi-eclef18.bbl
@@ -0,0 +1,241 @@
+\begin{thebibliography}{10}
+\providecommand{\url}[1]{\texttt{#1}}
+\providecommand{\urlprefix}{URL }
+\providecommand{\doi}[1]{https://doi.org/#1}
+
+\bibitem{bahdanau_neural_2018}
+Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly
+  learning to align and translate. In: Proceedings of the 6th {International}
+  {Conference} on {Learning} {Representations} ({ICLR} 2018) (2018)
+
+\bibitem{bengio_scheduled_2015}
+Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled {Sampling} for
+  {Sequence} {Prediction} with {Recurrent} {Neural} {Networks}. In: Advances in
+  {Neural} {Information} {Processing} {Systems} 28, pp. 1171--1179. Curran
+  Associates, Inc. (2015)
+
+\bibitem{bengio_learning_1994}
+Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with
+  gradient descent is difficult. IEEE transactions on neural networks
+  \textbf{5}(2),  157--166 (1994)
+
+\bibitem{bojanowski_enriching_2017}
+Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching {Word} {Vectors}
+  with {Subword} {Information}. Transactions of the Association of
+  Computational Linguistics  \textbf{5}(1),  135--146 (2017)
+
+\bibitem{cabot_sibm_2016}
+Cabot, C., Soualmia, L.F., Dahamna, B., Darmoni, S.J.: {SIBM} at {CLEF}
+  {eHealth} {Evaluation} {Lab} 2016: {Extracting} {Concepts} in {French}
+  {Medical} {Texts} with {ECMT} and {CIMIND}. In: {CLEF} 2015 {Online}
+  {Working} {Notes}. CEUR-WS (2016)
+
+\bibitem{cho_learning_2014}
+Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
+  Schwenk, H., Bengio, Y.: Learning {Phrase} {Representations} using {RNN}
+  {Encoder}–{Decoder} for {Statistical} {Machine} {Translation}. In:
+  Proceedings of the 2014 {Conference} on {Empirical} {Methods} in {Natural}
+  {Language} {Processing} ({EMNLP}). pp. 1724--1734. Association for
+  Computational Linguistics, Doha, Qatar (October 2014)
+
+\bibitem{collobert_natural_2011}
+Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
+  Natural language processing (almost) from scratch. Journal of Machine
+  Learning Research  \textbf{12}(Aug),  2493--2537 (2011)
+
+\bibitem{dermouche_ecstra-inserm_2016}
+Dermouche, M., Looten, V., Flicoteaux, R., Chevret, S., Velcin, J., Taright,
+  N.: {ECSTRA}-{INSERM}@ {CLEF} {eHealth}2016-task 2: {ICD}10 {Code}
+  {Extraction} from {Death} {Certificates}. In: {CLEF} 2016 {Online} {Working}
+  {Notes} (2016)
+
+\bibitem{di_nunzio_lexicon_2017}
+Di~Nunzio, G.M., Beghini, F., Vezzani, F., Henrot, G.: A {Lexicon} {Based}
+  {Approach} to {Classification} of {ICD}10 {Codes}. {IMS} {Unipd} at {CLEF}
+  {eHealth} {Task}. In: {CLEF} 2017 {Online} {Working} {Notes}. CEUR-WS (2017)
+
+\bibitem{dyer_transition-based_2015}
+Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.:
+  Transition-{Based} {Dependency} {Parsing} with {Stack} {Long} {Short}-{Term}
+  {Memory}. In: Proceedings of the 53rd {Annual} {Meeting} of the {Association}
+  for {Computational} {Linguistics} and the 7th {International} {Joint}
+  {Conference} on {Natural} {Language} {Processing} ({Volume} 1: {Long}
+  {Papers}). vol.~1, pp. 334--343 (2015)
+
+\bibitem{ebersbach_fusion_2017}
+Ebersbach, M., Herms, R., Eibl, M.: Fusion {Methods} for {ICD}10 {Code}
+  {Classification} of {Death} {Certificates} in {Multilingual} {Corpora}. In:
+  {CLEF} 2017 {Online} {Working} {Notes}. CEUR-WS (2017)
+
+\bibitem{faruqui_improving_2014}
+Faruqui, M., Dyer, C.: Improving vector space word representations using
+  multilingual correlation. In: Proceedings of the 14th {Conference} of the
+  {European} {Chapter} of the {Association} for {Computational} {Linguistics}.
+  pp. 462--471 (2014)
+
+\bibitem{guo_cross-lingual_2015}
+Guo, J., Che, W., Yarowsky, D., Wang, H., Liu, T.: Cross-lingual dependency
+  parsing based on distributed representations. In: Proceedings of the 53rd
+  {Annual} {Meeting} of the {Association} for {Computational} {Linguistics} and
+  the 7th {International} {Joint} {Conference} on {Natural} {Language}
+  {Processing} ({Volume} 1: {Long} {Papers}). vol.~1, pp. 1234--1244 (2015)
+
+\bibitem{ho-dac_litl_2017}
+Ho-Dac, L.M., Fabre, C., Birski, A., Boudraa, I., Bourriot, A., Cassier, M.,
+  Delvenne, L., Garcia-Gonzalez, C., Kang, E.B., Piccinini, E.: {LITL} at
+  {CLEF} {eHealth}2017: automatic classification of death reports. In: {CLEF}
+  2017 {Online} {Working} {Notes}. CEUR-WS (2017)
+
+\bibitem{ho-dac_litl_2016}
+Ho-Dac, L.M., Tanguy, L., Grauby, C., Mby, A.H., Malosse, J., Rivière, L.,
+  Veltz-Mauclair, A.: {LITL} at {CLEF} {eHealth}2016: recognizing entities in
+  {French} biomedical documents. In: {CLEF} 2016 {Online} {Working} {Notes}.
+  CEUR-WS (2016)
+
+\bibitem{hochreiter_gradient_2001}
+Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in
+  recurrent nets: the difficulty of learning long-term dependencies. A field
+  guide to dynamical recurrent neural networks. IEEE Press (2001)
+
+\bibitem{hochreiter_long_1997}
+Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
+  \textbf{9}(8),  1735--1780 (1997)
+
+\bibitem{jonnagaddala_automatic_2017}
+Jonnagaddala, J., Hu, F.: Automatic coding of death certificates to {ICD}-10
+  terminology. In: {CLEF} 2017 {Online} {Working} {Notes}. CEUR-WS (2017)
+
+\bibitem{kingma_adam:_2014}
+Kingma, D.P., Ba, J.: Adam: {A} method for stochastic optimization. In:
+  Proceedings of the 3rd {International} {Conference} on {Learning}
+  {Representations} ({ICLR}) (2014)
+
+\bibitem{lample_neural_2016}
+Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
+  {Architectures} for {Named} {Entity} {Recognition}. In: Proceedings of the
+  15th {Annual} {Conference} of the {North} {American} {Chapter} of the
+  {Association} for {Computational} {Linguistics}: {Human} {Language}
+  {Technologies}. pp. 260--270 (2016)
+
+\bibitem{miftakhutdinov_kfu_2017}
+Miftahutdinov, Z., Tutubalina, E.: Kfu at clef ehealth 2017 task 1: {Icd}-10
+  coding of english death certificates with recurrent neural networks. In:
+  {CLEF} 2017 {Online} {Working} {Notes}. CEUR-WS (2017)
+
+\bibitem{mikolov_efficient_2013}
+Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word
+  representations in vector space. arXiv preprint arXiv:1301.3781  (2013)
+
+\bibitem{mikolov_distributed_2013}
+Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed
+  representations of words and phrases and their compositionality. In: Advances
+  in neural information processing systems. pp. 3111--3119 (2013)
+
+\bibitem{van_mulligen_erasmus_2016}
+van Mulligen, E.M., Afzal, Z., Akhondi, S.A., Vo, D., Kors, J.A.: Erasmus {MC}
+  at {CLEF} {eHealth} 2016: {Concept} {Recognition} and {Coding} in {French}
+  {Texts}. In: {CLEF} 2016 {Online} {Working} {Notes}. CEUR-WS (2016)
+
+\bibitem{neveol_clef_2017}
+Névéol, A., Anderson, R.N., Cohen, K.B., Grouin, C., Lavergne, T., Rey, G.,
+  Robert, A., Rondet, C., Zweigenbaum, P.: {CLEF} {eHealth} 2017 {Multilingual}
+  {Information} {Extraction} task overview: {ICD}10 coding of death
+  certificates in {English} and {French}. In: {CLEF} 2017 {Evaluation} {Labs}
+  and {Workshop}: {Online} {Working} {Notes}, {CEUR}-{WS}. p.~17 (2017)
+
+\bibitem{neveol_clinical_2016}
+Névéol, A., Cohen, K.B., Grouin, C., Hamon, T., Lavergne, T., Kelly, L.,
+  Goeuriot, L., Rey, G., Robert, A., Tannier, X., Zweigenbaum, P.: Clinical
+  {Information} {Extraction} at the {CLEF} {eHealth} {Evaluation} lab 2016.
+  CEUR workshop proceedings  \textbf{1609},  28--42 (September 2016)
+
+\bibitem{neveol_clef_2018}
+Névéol, A., Robert, A., Grippo, F., Morgand, C., Orsi, C., Pelikán, L.,
+  Ramadier, L., Rey, G., Zweigenbaum, P.: {CLEF} {eHealth} 2018 {Multilingual}
+  {Information} {Extraction} task {Overview}: {ICD}10 {Coding} of {Death}
+  {Certificates} in {French}, {Hungarian} and {Italian}. In: {CLEF} 2018
+  {Evaluation} {Labs} and {Workshop}: {Online} {Working} {Notes}. CEUR-WS
+  (September 2018)
+
+\bibitem{pennington_glove_2014}
+Pennington, J., Socher, R., Manning, C.: Glove: {Global} vectors for word
+  representation. In: Proceedings of the 2014 conference on empirical methods
+  in natural language processing ({EMNLP}). pp. 1532--1543 (2014)
+
+\bibitem{peters_semi-supervised_2017}
+Peters, M., Ammar, W., Bhagavatula, C., Power, R.: Semi-supervised sequence
+  tagging with bidirectional language models. In: Proceedings of the 55th
+  {Annual} {Meeting} of the {Association} for {Computational} {Linguistics}
+  ({Volume} 1: {Long} {Papers}). vol.~1, pp. 1756--1765 (2017)
+
+\bibitem{peters_deep_2018}
+Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K.,
+  Zettlemoyer, L.: Deep contextualized word representations. In: The 16th
+  {Annual} {Conference} of the {North} {American} {Chapter} of the
+  {Association} for {Computational} {Linguistics} (2018)
+
+\bibitem{pham_learning_2015}
+Pham, H., Luong, T., Manning, C.: Learning distributed representations for
+  multilingual text sequences. In: Proceedings of the 1st {Workshop} on
+  {Vector} {Space} {Modeling} for {Natural} {Language} {Processing}. pp. 88--94
+  (2015)
+
+\bibitem{pinter_mimicking_2017}
+Pinter, Y., Guthrie, R., Eisenstein, J.: Mimicking {Word} {Embeddings} using
+  {Subword} {RNNs}. In: Proceedings of the 2017 {Conference} on {Empirical}
+  {Methods} in {Natural} {Language} {Processing}. pp. 102--112 (2017)
+
+\bibitem{raffel_feed-forward_2016}
+Raffel, C., Ellis, D.P.: Feed-forward networks with attention can solve some
+  long-term memory problems. In: Workshop {Extended} {Abstracts} of the 4th
+  {International} {Conference} on {Learning} {Representations} (2016)
+
+\bibitem{suominen_overview_2018}
+Suominen, H., Kelly, L., Goeuriot, L., Kanoulas, E., Azzopardi, L., Spijker,
+  R., Li, D., Névéol, A., Ramadier, L., Robert, A., Zuccon, G., Palotti, J.:
+  Overview of the {CLEF} {eHealth} {Evaluation} {Lab} 2018. In: {CLEF} 2018 -
+  8th {Conference} and {Labs} of the {Evaluation} {Forum}. Lecture {Notes} in
+  {Computer} {Science} ({LNCS}), Springer (2018)
+
+\bibitem{sutskever_sequence_2014}
+Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
+  networks. In: Advances in neural information processing systems. pp.
+  3104--3112 (2014)
+
+\bibitem{sogaard_inverted_2015}
+Søgaard, A., Agić, Z., Alonso, H.M., Plank, B., Bohnet, B., Johannsen, A.:
+  Inverted indexing for cross-lingual {NLP}. In: The 53rd {Annual} {Meeting} of
+  the {Association} for {Computational} {Linguistics} and the 7th
+  {International} {Joint} {Conference} of the {Asian} {Federation} of {Natural}
+  {Language} {Processing} ({ACL}-{IJCNLP} 2015) (2015)
+
+\bibitem{turney_frequency_2010}
+Turney, P.D., Pantel, P.: From frequency to meaning: {Vector} space models of
+  semantics. Journal of artificial intelligence research  \textbf{37},
+  141--188 (2010)
+
+\bibitem{vyas_sparse_2016}
+Vyas, Y., Carpuat, M.: Sparse bilingual word representations for cross-lingual
+  lexical entailment. In: Proceedings of the 2016 {Conference} of the {North}
+  {American} {Chapter} of the {Association} for {Computational} {Linguistics}:
+  {Human} {Language} {Technologies}. pp. 1187--1197 (2016)
+
+\bibitem{wang_part--speech_2015}
+Wang, P., Qian, Y., Soong, F.K., He, L., Zhao, H.: Part-of-speech tagging with
+  bidirectional long short-term memory recurrent neural network. arXiv preprint
+  arXiv:1510.06168  (2015)
+
+\bibitem{wei_disease_2016}
+Wei, Q., Chen, T., Xu, R., He, Y., Gui, L.: Disease named entity recognition by
+  combining conditional random fields and bidirectional recurrent neural
+  networks. Database: The Journal of Biological Databases and Curation
+  \textbf{2016} (2016)
+
+\bibitem{xing_normalized_2015}
+Xing, C., Wang, D., Liu, C., Lin, Y.: Normalized word embedding and orthogonal
+  transform for bilingual word translation. In: Proceedings of the 2015
+  {Conference} of the {North} {American} {Chapter} of the {Association} for
+  {Computational} {Linguistics}: {Human} {Language} {Technologies}. pp.
+  1006--1011 (2015)
+
+\end{thebibliography}
diff --git a/paper/wbi-eclef18.blg b/paper/wbi-eclef18.blg
new file mode 100644
index 0000000000000000000000000000000000000000..14004d754175ca9b6d7650e187661e6cd0aef721
--- /dev/null
+++ b/paper/wbi-eclef18.blg
@@ -0,0 +1,46 @@
+This is BibTeX, Version 0.99d (TeX Live 2014)
+Capacity: max_strings=35307, hash_size=35307, hash_prime=30011
+The top-level auxiliary file: wbi-eclef18.aux
+The style file: splncs04.bst
+Database file #1: references.bib
+You've used 41 entries,
+            2850 wiz_defined-function locations,
+            796 strings with 15366 characters,
+and the built_in function-call counts, 26474 in all, are:
+= -- 2136
+> -- 1052
+< -- 31
++ -- 430
+- -- 388
+* -- 1691
+:= -- 3417
+add.period$ -- 67
+call.type$ -- 41
+change.case$ -- 378
+chr.to.int$ -- 0
+cite$ -- 41
+duplicate$ -- 2289
+empty$ -- 2300
+format.name$ -- 429
+if$ -- 5740
+int.to.chr$ -- 0
+int.to.str$ -- 41
+missing$ -- 486
+newline$ -- 129
+num.names$ -- 82
+pop$ -- 1034
+preamble$ -- 1
+purify$ -- 276
+quote$ -- 0
+skip$ -- 654
+stack$ -- 0
+substring$ -- 1306
+swap$ -- 1203
+text.length$ -- 31
+text.prefix$ -- 0
+top$ -- 0
+type$ -- 162
+warning$ -- 0
+while$ -- 184
+width$ -- 43
+write$ -- 412
diff --git a/paper/wbi-eclef18.log b/paper/wbi-eclef18.log
new file mode 100644
index 0000000000000000000000000000000000000000..e288f9af1424dee376f1a46a714c5c767bf0fd66
--- /dev/null
+++ b/paper/wbi-eclef18.log
@@ -0,0 +1,765 @@
+This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2014) (preloaded format=pdflatex 2014.12.9)  27 JUN 2018 15:45
+entering extended mode
+ restricted \write18 enabled.
+ %&-line parsing enabled.
+**wbi-eclef18.tex
+(./wbi-eclef18.tex
+LaTeX2e <2014/05/01>
+Babel <3.9k> and hyphenation patterns for 78 languages loaded.
+(./llncs.cls
+Document Class: llncs 2018/03/10 v2.20 
+ LaTeX document class for Lecture Notes in Computer Science
+(/usr/local/texlive/2014/texmf-dist/tex/latex/base/article.cls
+Document Class: article 2007/10/19 v1.4h Standard LaTeX document class
+(/usr/local/texlive/2014/texmf-dist/tex/latex/base/size10.clo
+File: size10.clo 2007/10/19 v1.4h Standard LaTeX file (size option)
+)
+\c@part=\count79
+\c@section=\count80
+\c@subsection=\count81
+\c@subsubsection=\count82
+\c@paragraph=\count83
+\c@subparagraph=\count84
+\c@figure=\count85
+\c@table=\count86
+\abovecaptionskip=\skip41
+\belowcaptionskip=\skip42
+\bibindent=\dimen102
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/tools/multicol.sty
+Package: multicol 2014/04/23 v1.8e multicolumn formatting (FMi)
+\c@tracingmulticols=\count87
+\mult@box=\box26
+\multicol@leftmargin=\dimen103
+\c@unbalance=\count88
+\c@collectmore=\count89
+\doublecol@number=\count90
+\multicoltolerance=\count91
+\multicolpretolerance=\count92
+\full@width=\dimen104
+\page@free=\dimen105
+\premulticols=\dimen106
+\postmulticols=\dimen107
+\multicolsep=\skip43
+\multicolbaselineskip=\skip44
+\partial@page=\box27
+\last@line=\box28
+\maxbalancingoverflow=\dimen108
+\mult@rightbox=\box29
+\mult@grightbox=\box30
+\mult@gfirstbox=\box31
+\mult@firstbox=\box32
+\@tempa=\box33
+\@tempa=\box34
+\@tempa=\box35
+\@tempa=\box36
+\@tempa=\box37
+\@tempa=\box38
+\@tempa=\box39
+\@tempa=\box40
+\@tempa=\box41
+\@tempa=\box42
+\@tempa=\box43
+\@tempa=\box44
+\@tempa=\box45
+\@tempa=\box46
+\@tempa=\box47
+\@tempa=\box48
+\@tempa=\box49
+\c@columnbadness=\count93
+\c@finalcolumnbadness=\count94
+\last@try=\dimen109
+\multicolovershoot=\dimen110
+\multicolundershoot=\dimen111
+\mult@nat@firstbox=\box50
+\colbreak@box=\box51
+\mc@col@check@num=\count95
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/oberdiek/aliascnt.sty
+Package: aliascnt 2009/09/08 v1.3 Alias counters (HO)
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/carlisle/remreset.sty))
+\c@chapter=\count96
+LaTeX Font Info:    Redeclaring math symbol \Gamma on input line 362.
+LaTeX Font Info:    Redeclaring math symbol \Delta on input line 363.
+LaTeX Font Info:    Redeclaring math symbol \Theta on input line 364.
+LaTeX Font Info:    Redeclaring math symbol \Lambda on input line 365.
+LaTeX Font Info:    Redeclaring math symbol \Xi on input line 366.
+LaTeX Font Info:    Redeclaring math symbol \Pi on input line 367.
+LaTeX Font Info:    Redeclaring math symbol \Sigma on input line 368.
+LaTeX Font Info:    Redeclaring math symbol \Upsilon on input line 369.
+LaTeX Font Info:    Redeclaring math symbol \Phi on input line 370.
+LaTeX Font Info:    Redeclaring math symbol \Psi on input line 371.
+LaTeX Font Info:    Redeclaring math symbol \Omega on input line 372.
+\tocchpnum=\dimen112
+\tocsecnum=\dimen113
+\tocsectotal=\dimen114
+\tocsubsecnum=\dimen115
+\tocsubsectotal=\dimen116
+\tocsubsubsecnum=\dimen117
+\tocsubsubsectotal=\dimen118
+\tocparanum=\dimen119
+\tocparatotal=\dimen120
+\tocsubparanum=\dimen121
+\@tempcntc=\count97
+\fnindent=\dimen122
+\c@@inst=\count98
+\c@@auth=\count99
+\c@auco=\count100
+\instindent=\dimen123
+\authrun=\box52
+\authorrunning=\toks14
+\tocauthor=\toks15
+\titrun=\box53
+\titlerunning=\toks16
+\toctitle=\toks17
+\c@theorem=\count101
+\c@case=\count102
+\c@conjecture=\count103
+\c@corollary=\count104
+\c@definition=\count105
+\c@example=\count106
+\c@exercise=\count107
+\c@lemma=\count108
+\c@note=\count109
+\c@problem=\count110
+\c@property=\count111
+\c@proposition=\count112
+\c@question=\count113
+\c@solution=\count114
+\c@remark=\count115
+\headlineindent=\dimen124
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/base/inputenc.sty
+Package: inputenc 2014/04/30 v1.2b Input encoding file
+\inpenc@prehook=\toks18
+\inpenc@posthook=\toks19
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/base/utf8.def
+File: utf8.def 2008/04/05 v1.1m UTF-8 support for inputenc
+Now handling font encoding OML ...
+... no UTF-8 mapping file for font encoding OML
+Now handling font encoding T1 ...
+... processing UTF-8 mapping file for font encoding T1
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/base/t1enc.dfu
+File: t1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
+   defining Unicode char U+00A1 (decimal 161)
+   defining Unicode char U+00A3 (decimal 163)
+   defining Unicode char U+00AB (decimal 171)
+   defining Unicode char U+00BB (decimal 187)
+   defining Unicode char U+00BF (decimal 191)
+   defining Unicode char U+00C0 (decimal 192)
+   defining Unicode char U+00C1 (decimal 193)
+   defining Unicode char U+00C2 (decimal 194)
+   defining Unicode char U+00C3 (decimal 195)
+   defining Unicode char U+00C4 (decimal 196)
+   defining Unicode char U+00C5 (decimal 197)
+   defining Unicode char U+00C6 (decimal 198)
+   defining Unicode char U+00C7 (decimal 199)
+   defining Unicode char U+00C8 (decimal 200)
+   defining Unicode char U+00C9 (decimal 201)
+   defining Unicode char U+00CA (decimal 202)
+   defining Unicode char U+00CB (decimal 203)
+   defining Unicode char U+00CC (decimal 204)
+   defining Unicode char U+00CD (decimal 205)
+   defining Unicode char U+00CE (decimal 206)
+   defining Unicode char U+00CF (decimal 207)
+   defining Unicode char U+00D0 (decimal 208)
+   defining Unicode char U+00D1 (decimal 209)
+   defining Unicode char U+00D2 (decimal 210)
+   defining Unicode char U+00D3 (decimal 211)
+   defining Unicode char U+00D4 (decimal 212)
+   defining Unicode char U+00D5 (decimal 213)
+   defining Unicode char U+00D6 (decimal 214)
+   defining Unicode char U+00D8 (decimal 216)
+   defining Unicode char U+00D9 (decimal 217)
+   defining Unicode char U+00DA (decimal 218)
+   defining Unicode char U+00DB (decimal 219)
+   defining Unicode char U+00DC (decimal 220)
+   defining Unicode char U+00DD (decimal 221)
+   defining Unicode char U+00DE (decimal 222)
+   defining Unicode char U+00DF (decimal 223)
+   defining Unicode char U+00E0 (decimal 224)
+   defining Unicode char U+00E1 (decimal 225)
+   defining Unicode char U+00E2 (decimal 226)
+   defining Unicode char U+00E3 (decimal 227)
+   defining Unicode char U+00E4 (decimal 228)
+   defining Unicode char U+00E5 (decimal 229)
+   defining Unicode char U+00E6 (decimal 230)
+   defining Unicode char U+00E7 (decimal 231)
+   defining Unicode char U+00E8 (decimal 232)
+   defining Unicode char U+00E9 (decimal 233)
+   defining Unicode char U+00EA (decimal 234)
+   defining Unicode char U+00EB (decimal 235)
+   defining Unicode char U+00EC (decimal 236)
+   defining Unicode char U+00ED (decimal 237)
+   defining Unicode char U+00EE (decimal 238)
+   defining Unicode char U+00EF (decimal 239)
+   defining Unicode char U+00F0 (decimal 240)
+   defining Unicode char U+00F1 (decimal 241)
+   defining Unicode char U+00F2 (decimal 242)
+   defining Unicode char U+00F3 (decimal 243)
+   defining Unicode char U+00F4 (decimal 244)
+   defining Unicode char U+00F5 (decimal 245)
+   defining Unicode char U+00F6 (decimal 246)
+   defining Unicode char U+00F8 (decimal 248)
+   defining Unicode char U+00F9 (decimal 249)
+   defining Unicode char U+00FA (decimal 250)
+   defining Unicode char U+00FB (decimal 251)
+   defining Unicode char U+00FC (decimal 252)
+   defining Unicode char U+00FD (decimal 253)
+   defining Unicode char U+00FE (decimal 254)
+   defining Unicode char U+00FF (decimal 255)
+   defining Unicode char U+0102 (decimal 258)
+   defining Unicode char U+0103 (decimal 259)
+   defining Unicode char U+0104 (decimal 260)
+   defining Unicode char U+0105 (decimal 261)
+   defining Unicode char U+0106 (decimal 262)
+   defining Unicode char U+0107 (decimal 263)
+   defining Unicode char U+010C (decimal 268)
+   defining Unicode char U+010D (decimal 269)
+   defining Unicode char U+010E (decimal 270)
+   defining Unicode char U+010F (decimal 271)
+   defining Unicode char U+0110 (decimal 272)
+   defining Unicode char U+0111 (decimal 273)
+   defining Unicode char U+0118 (decimal 280)
+   defining Unicode char U+0119 (decimal 281)
+   defining Unicode char U+011A (decimal 282)
+   defining Unicode char U+011B (decimal 283)
+   defining Unicode char U+011E (decimal 286)
+   defining Unicode char U+011F (decimal 287)
+   defining Unicode char U+0130 (decimal 304)
+   defining Unicode char U+0131 (decimal 305)
+   defining Unicode char U+0132 (decimal 306)
+   defining Unicode char U+0133 (decimal 307)
+   defining Unicode char U+0139 (decimal 313)
+   defining Unicode char U+013A (decimal 314)
+   defining Unicode char U+013D (decimal 317)
+   defining Unicode char U+013E (decimal 318)
+   defining Unicode char U+0141 (decimal 321)
+   defining Unicode char U+0142 (decimal 322)
+   defining Unicode char U+0143 (decimal 323)
+   defining Unicode char U+0144 (decimal 324)
+   defining Unicode char U+0147 (decimal 327)
+   defining Unicode char U+0148 (decimal 328)
+   defining Unicode char U+014A (decimal 330)
+   defining Unicode char U+014B (decimal 331)
+   defining Unicode char U+0150 (decimal 336)
+   defining Unicode char U+0151 (decimal 337)
+   defining Unicode char U+0152 (decimal 338)
+   defining Unicode char U+0153 (decimal 339)
+   defining Unicode char U+0154 (decimal 340)
+   defining Unicode char U+0155 (decimal 341)
+   defining Unicode char U+0158 (decimal 344)
+   defining Unicode char U+0159 (decimal 345)
+   defining Unicode char U+015A (decimal 346)
+   defining Unicode char U+015B (decimal 347)
+   defining Unicode char U+015E (decimal 350)
+   defining Unicode char U+015F (decimal 351)
+   defining Unicode char U+0160 (decimal 352)
+   defining Unicode char U+0161 (decimal 353)
+   defining Unicode char U+0162 (decimal 354)
+   defining Unicode char U+0163 (decimal 355)
+   defining Unicode char U+0164 (decimal 356)
+   defining Unicode char U+0165 (decimal 357)
+   defining Unicode char U+016E (decimal 366)
+   defining Unicode char U+016F (decimal 367)
+   defining Unicode char U+0170 (decimal 368)
+   defining Unicode char U+0171 (decimal 369)
+   defining Unicode char U+0178 (decimal 376)
+   defining Unicode char U+0179 (decimal 377)
+   defining Unicode char U+017A (decimal 378)
+   defining Unicode char U+017B (decimal 379)
+   defining Unicode char U+017C (decimal 380)
+   defining Unicode char U+017D (decimal 381)
+   defining Unicode char U+017E (decimal 382)
+   defining Unicode char U+200C (decimal 8204)
+   defining Unicode char U+2013 (decimal 8211)
+   defining Unicode char U+2014 (decimal 8212)
+   defining Unicode char U+2018 (decimal 8216)
+   defining Unicode char U+2019 (decimal 8217)
+   defining Unicode char U+201A (decimal 8218)
+   defining Unicode char U+201C (decimal 8220)
+   defining Unicode char U+201D (decimal 8221)
+   defining Unicode char U+201E (decimal 8222)
+   defining Unicode char U+2030 (decimal 8240)
+   defining Unicode char U+2031 (decimal 8241)
+   defining Unicode char U+2039 (decimal 8249)
+   defining Unicode char U+203A (decimal 8250)
+   defining Unicode char U+2423 (decimal 9251)
+)
+Now handling font encoding OT1 ...
+... processing UTF-8 mapping file for font encoding OT1
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/base/ot1enc.dfu
+File: ot1enc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
+   defining Unicode char U+00A1 (decimal 161)
+   defining Unicode char U+00A3 (decimal 163)
+   defining Unicode char U+00B8 (decimal 184)
+   defining Unicode char U+00BF (decimal 191)
+   defining Unicode char U+00C5 (decimal 197)
+   defining Unicode char U+00C6 (decimal 198)
+   defining Unicode char U+00D8 (decimal 216)
+   defining Unicode char U+00DF (decimal 223)
+   defining Unicode char U+00E6 (decimal 230)
+   defining Unicode char U+00EC (decimal 236)
+   defining Unicode char U+00ED (decimal 237)
+   defining Unicode char U+00EE (decimal 238)
+   defining Unicode char U+00EF (decimal 239)
+   defining Unicode char U+00F8 (decimal 248)
+   defining Unicode char U+0131 (decimal 305)
+   defining Unicode char U+0141 (decimal 321)
+   defining Unicode char U+0142 (decimal 322)
+   defining Unicode char U+0152 (decimal 338)
+   defining Unicode char U+0153 (decimal 339)
+   defining Unicode char U+2013 (decimal 8211)
+   defining Unicode char U+2014 (decimal 8212)
+   defining Unicode char U+2018 (decimal 8216)
+   defining Unicode char U+2019 (decimal 8217)
+   defining Unicode char U+201C (decimal 8220)
+   defining Unicode char U+201D (decimal 8221)
+)
+Now handling font encoding OMS ...
+... processing UTF-8 mapping file for font encoding OMS
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/base/omsenc.dfu
+File: omsenc.dfu 2008/04/05 v1.1m UTF-8 support for inputenc
+   defining Unicode char U+00A7 (decimal 167)
+   defining Unicode char U+00B6 (decimal 182)
+   defining Unicode char U+00B7 (decimal 183)
+   defining Unicode char U+2020 (decimal 8224)
+   defining Unicode char U+2021 (decimal 8225)
+   defining Unicode char U+2022 (decimal 8226)
+)
+Now handling font encoding OMX ...
+... no UTF-8 mapping file for font encoding OMX
+Now handling font encoding U ...
+... no UTF-8 mapping file for font encoding U
+   defining Unicode char U+00A9 (decimal 169)
+   defining Unicode char U+00AA (decimal 170)
+   defining Unicode char U+00AE (decimal 174)
+   defining Unicode char U+00BA (decimal 186)
+   defining Unicode char U+02C6 (decimal 710)
+   defining Unicode char U+02DC (decimal 732)
+   defining Unicode char U+200C (decimal 8204)
+   defining Unicode char U+2026 (decimal 8230)
+   defining Unicode char U+2122 (decimal 8482)
+   defining Unicode char U+2423 (decimal 9251)
+))
+(/usr/local/texlive/2014/texmf-dist/tex/generic/babel/babel.sty
+Package: babel 2014/03/24 3.9k The Babel package
+
+(/usr/local/texlive/2014/texmf-dist/tex/generic/babel-english/english.ldf
+Language: english 2012/08/20 v3.3p English support from the babel system
+
+(/usr/local/texlive/2014/texmf-dist/tex/generic/babel/babel.def
+File: babel.def 2014/03/24 3.9k Babel common definitions
+\babel@savecnt=\count116
+\U@D=\dimen125
+)
+\l@canadian = a dialect from \language\l@american 
+\l@australian = a dialect from \language\l@british 
+\l@newzealand = a dialect from \language\l@british 
+))
+(/usr/local/texlive/2014/texmf-dist/tex/latex/graphics/color.sty
+Package: color 2014/04/23 v1.1a Standard LaTeX Color (DPC)
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/latexconfig/color.cfg
+File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
+)
+Package color Info: Driver file: pdftex.def on input line 137.
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/pdftex-def/pdftex.def
+File: pdftex.def 2011/05/27 v0.06d Graphics/color for pdfTeX
+
+(/usr/local/texlive/2014/texmf-dist/tex/generic/oberdiek/infwarerr.sty
+Package: infwarerr 2010/04/08 v1.3 Providing info/warning/error messages (HO)
+)
+(/usr/local/texlive/2014/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
+Package: ltxcmds 2011/11/09 v1.22 LaTeX kernel commands for general use (HO)
+)
+\Gread@gobject=\count117
+))
+(/usr/local/texlive/2014/texmf-dist/tex/latex/multirow/multirow.sty
+\bigstrutjot=\dimen126
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/tools/tabularx.sty
+Package: tabularx 2014/05/13 v2.10 `tabularx' package (DPC)
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/tools/array.sty
+Package: array 2008/09/09 v2.4c Tabular extension package (FMi)
+\col@sep=\dimen127
+\extrarowheight=\dimen128
+\NC@list=\toks20
+\extratabsurround=\skip45
+\backup@length=\skip46
+)
+\TX@col@width=\dimen129
+\TX@old@table=\dimen130
+\TX@old@col=\dimen131
+\TX@target=\dimen132
+\TX@delta=\dimen133
+\TX@cols=\count118
+\TX@ftn=\toks21
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/booktabs/booktabs.sty
+Package: booktabs 2005/04/14 v1.61803 publication quality tables
+\heavyrulewidth=\dimen134
+\lightrulewidth=\dimen135
+\cmidrulewidth=\dimen136
+\belowrulesep=\dimen137
+\belowbottomsep=\dimen138
+\aboverulesep=\dimen139
+\abovetopsep=\dimen140
+\cmidrulesep=\dimen141
+\cmidrulekern=\dimen142
+\defaultaddspace=\dimen143
+\@cmidla=\count119
+\@cmidlb=\count120
+\@aboverulesep=\dimen144
+\@belowrulesep=\dimen145
+\@thisruleclass=\count121
+\@lastruleclass=\count122
+\@thisrulewidth=\dimen146
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/url/url.sty
+\Urlmuskip=\muskip10
+Package: url 2013/09/16  ver 3.4  Verb mode for urls, etc.
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/hyperref/hyperref.sty
+Package: hyperref 2012/11/06 v6.83m Hypertext links for LaTeX
+
+(/usr/local/texlive/2014/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
+Package: hobsub-hyperref 2012/05/28 v1.13 Bundle oberdiek, subset hyperref (HO)
+
+
+(/usr/local/texlive/2014/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
+Package: hobsub-generic 2012/05/28 v1.13 Bundle oberdiek, subset generic (HO)
+Package: hobsub 2012/05/28 v1.13 Construct package bundles (HO)
+Package hobsub Info: Skipping package `infwarerr' (already loaded).
+Package hobsub Info: Skipping package `ltxcmds' (already loaded).
+Package: ifluatex 2010/03/01 v1.3 Provides the ifluatex switch (HO)
+Package ifluatex Info: LuaTeX not detected.
+Package: ifvtex 2010/03/01 v1.5 Detect VTeX and its facilities (HO)
+Package ifvtex Info: VTeX not detected.
+Package: intcalc 2007/09/27 v1.1 Expandable calculations with integers (HO)
+Package: ifpdf 2011/01/30 v2.3 Provides the ifpdf switch (HO)
+Package ifpdf Info: pdfTeX in PDF mode is detected.
+Package: etexcmds 2011/02/16 v1.5 Avoid name clashes with e-TeX commands (HO)
+Package etexcmds Info: Could not find \expanded.
+(etexcmds)             That can mean that you are not using pdfTeX 1.50 or
+(etexcmds)             that some package has redefined \expanded.
+(etexcmds)             In the latter case, load this package earlier.
+Package: kvsetkeys 2012/04/25 v1.16 Key value parser (HO)
+Package: kvdefinekeys 2011/04/07 v1.3 Define keys (HO)
+Package: pdftexcmds 2011/11/29 v0.20 Utility functions of pdfTeX for LuaTeX (HO
+)
+Package pdftexcmds Info: LuaTeX not detected.
+Package pdftexcmds Info: \pdf@primitive is available.
+Package pdftexcmds Info: \pdf@ifprimitive is available.
+Package pdftexcmds Info: \pdfdraftmode found.
+Package: pdfescape 2011/11/25 v1.13 Implements pdfTeX's escape features (HO)
+Package: bigintcalc 2012/04/08 v1.3 Expandable calculations on big integers (HO
+)
+Package: bitset 2011/01/30 v1.1 Handle bit-vector datatype (HO)
+Package: uniquecounter 2011/01/30 v1.2 Provide unlimited unique counter (HO)
+)
+Package hobsub Info: Skipping package `hobsub' (already loaded).
+Package: letltxmacro 2010/09/02 v1.4 Let assignment for LaTeX macros (HO)
+Package: hopatch 2012/05/28 v1.2 Wrapper for package hooks (HO)
+Package: xcolor-patch 2011/01/30 xcolor patch
+Package: atveryend 2011/06/30 v1.8 Hooks at the very end of document (HO)
+Package atveryend Info: \enddocument detected (standard20110627).
+Package: atbegshi 2011/10/05 v1.16 At begin shipout hook (HO)
+Package: refcount 2011/10/16 v3.4 Data extraction from label references (HO)
+Package: hycolor 2011/01/30 v1.7 Color options for hyperref/bookmark (HO)
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/graphics/keyval.sty
+Package: keyval 2014/05/08 v1.15 key=value parser (DPC)
+\KV@toks@=\toks22
+)
+(/usr/local/texlive/2014/texmf-dist/tex/generic/ifxetex/ifxetex.sty
+Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/oberdiek/auxhook.sty
+Package: auxhook 2011/03/04 v1.3 Hooks for auxiliary files (HO)
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/oberdiek/kvoptions.sty
+Package: kvoptions 2011/06/30 v3.11 Key value format for package options (HO)
+)
+\@linkdim=\dimen147
+\Hy@linkcounter=\count123
+\Hy@pagecounter=\count124
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/hyperref/pd1enc.def
+File: pd1enc.def 2012/11/06 v6.83m Hyperref: PDFDocEncoding definition (HO)
+Now handling font encoding PD1 ...
+... no UTF-8 mapping file for font encoding PD1
+)
+\Hy@SavedSpaceFactor=\count125
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/latexconfig/hyperref.cfg
+File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
+)
+Package hyperref Info: Hyper figures OFF on input line 4443.
+Package hyperref Info: Link nesting OFF on input line 4448.
+Package hyperref Info: Hyper index ON on input line 4451.
+Package hyperref Info: Plain pages OFF on input line 4458.
+Package hyperref Info: Backreferencing OFF on input line 4463.
+Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
+Package hyperref Info: Bookmarks ON on input line 4688.
+\c@Hy@tempcnt=\count126
+LaTeX Info: Redefining \url on input line 5041.
+\XeTeXLinkMargin=\dimen148
+\Fld@menulength=\count127
+\Field@Width=\dimen149
+\Fld@charsize=\dimen150
+Package hyperref Info: Hyper figures OFF on input line 6295.
+Package hyperref Info: Link nesting OFF on input line 6300.
+Package hyperref Info: Hyper index ON on input line 6303.
+Package hyperref Info: backreferencing OFF on input line 6310.
+Package hyperref Info: Link coloring OFF on input line 6315.
+Package hyperref Info: Link coloring with OCG OFF on input line 6320.
+Package hyperref Info: PDF/A mode OFF on input line 6325.
+LaTeX Info: Redefining \ref on input line 6365.
+LaTeX Info: Redefining \pageref on input line 6369.
+\Hy@abspage=\count128
+\c@Item=\count129
+\c@Hfootnote=\count130
+)
+
+Package hyperref Message: Driver (autodetected): hpdftex.
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/hyperref/hpdftex.def
+File: hpdftex.def 2012/11/06 v6.83m Hyperref driver for pdfTeX
+\Fld@listcount=\count131
+\c@bookmark@seq@number=\count132
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
+Package: rerunfilecheck 2011/04/15 v1.7 Rerun checks for auxiliary files (HO)
+Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
+82.
+)
+\Hy@SectionHShift=\skip47
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/graphics/graphicx.sty
+Package: graphicx 2014/04/25 v1.0g Enhanced LaTeX Graphics (DPC,SPQR)
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/graphics/graphics.sty
+Package: graphics 2009/02/05 v1.0o Standard LaTeX Graphics (DPC,SPQR)
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/graphics/trig.sty
+Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
+)
+(/usr/local/texlive/2014/texmf-dist/tex/latex/latexconfig/graphics.cfg
+File: graphics.cfg 2010/04/23 v1.9 graphics configuration of TeX Live
+)
+Package graphics Info: Driver file: pdftex.def on input line 91.
+)
+\Gin@req@height=\dimen151
+\Gin@req@width=\dimen152
+)
+(./wbi-eclef18.aux)
+\openout1 = `wbi-eclef18.aux'.
+
+LaTeX Font Info:    Checking defaults for OML/cmm/m/it on input line 28.
+LaTeX Font Info:    ... okay on input line 28.
+LaTeX Font Info:    Checking defaults for T1/cmr/m/n on input line 28.
+LaTeX Font Info:    ... okay on input line 28.
+LaTeX Font Info:    Checking defaults for OT1/cmr/m/n on input line 28.
+LaTeX Font Info:    ... okay on input line 28.
+LaTeX Font Info:    Checking defaults for OMS/cmsy/m/n on input line 28.
+LaTeX Font Info:    ... okay on input line 28.
+LaTeX Font Info:    Checking defaults for OMX/cmex/m/n on input line 28.
+LaTeX Font Info:    ... okay on input line 28.
+LaTeX Font Info:    Checking defaults for U/cmr/m/n on input line 28.
+LaTeX Font Info:    ... okay on input line 28.
+LaTeX Font Info:    Checking defaults for PD1/pdf/m/n on input line 28.
+LaTeX Font Info:    ... okay on input line 28.
+
+(/usr/local/texlive/2014/texmf-dist/tex/context/base/supp-pdf.mkii
+[Loading MPS to PDF converter (version 2006.09.02).]
+\scratchcounter=\count133
+\scratchdimen=\dimen153
+\scratchbox=\box54
+\nofMPsegments=\count134
+\nofMParguments=\count135
+\everyMPshowfont=\toks23
+\MPscratchCnt=\count136
+\MPscratchDim=\dimen154
+\MPnumerator=\count137
+\makeMPintoPDFobject=\count138
+\everyMPtoPDFconversion=\toks24
+)
+\AtBeginShipoutBox=\box55
+Package hyperref Info: Link coloring OFF on input line 28.
+ (/usr/local/texlive/2014/texmf-dist/tex/latex/hyperref/nameref.sty
+Package: nameref 2012/10/27 v2.43 Cross-referencing by name of section
+
+(/usr/local/texlive/2014/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
+Package: gettitlestring 2010/12/03 v1.4 Cleanup title references (HO)
+)
+\c@section@level=\count139
+)
+LaTeX Info: Redefining \ref on input line 28.
+LaTeX Info: Redefining \pageref on input line 28.
+LaTeX Info: Redefining \nameref on input line 28.
+
+(./wbi-eclef18.out) (./wbi-eclef18.out)
+\@outlinefile=\write3
+\openout3 = `wbi-eclef18.out'.
+
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
+Package: epstopdf-base 2010/02/09 v2.5 Base part for package epstopdf
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/oberdiek/grfext.sty
+Package: grfext 2010/08/19 v1.1 Manage graphics extensions (HO)
+)
+Package grfext Info: Graphics extension search list:
+(grfext)             [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE
+G,.JBIG2,.JB2,.eps]
+(grfext)             \AppendGraphicsExtensions on input line 452.
+
+(/usr/local/texlive/2014/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
+File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
+e
+))
+LaTeX Font Info:    External font `cmex10' loaded for size
+(Font)              <7> on input line 50.
+LaTeX Font Info:    External font `cmex10' loaded for size
+(Font)              <5> on input line 50.
+LaTeX Font Info:    Try loading font information for OMS+cmtt on input line 50.
+
+LaTeX Font Info:    No file OMScmtt.fd. on input line 50.
+
+
+LaTeX Font Warning: Font shape `OMS/cmtt/m/n' undefined
+(Font)              using `OMS/cmsy/m/n' instead
+(Font)              for symbol `textbraceleft' on input line 50.
+
+LaTeX Font Info:    Try loading font information for OMS+cmr on input line 61.
+(/usr/local/texlive/2014/texmf-dist/tex/latex/base/omscmr.fd
+File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
+)
+LaTeX Font Info:    Font shape `OMS/cmr/m/n' in size <9> not available
+(Font)              Font shape `OMS/cmsy/m/n' tried instead on input line 61.
+
+(./10_introduction.tex
+LaTeX Font Info:    External font `cmex10' loaded for size
+(Font)              <9> on input line 6.
+LaTeX Font Info:    External font `cmex10' loaded for size
+(Font)              <6> on input line 6.
+
+Underfull \hbox (badness 10000) in paragraph at lines 8--8
+ [][][][][]$\OT1/cmr/m/n/9 https : / / sites . google . com / view / clef -[] e
+health -[] 2018 / task -[] 1 -[] multilingual -[] information -[]
+ []
+
+[1
+
+{/usr/local/texlive/2014/texmf-var/fonts/map/pdftex/updmap/pdftex.map}])
+(./20_related_work.tex [2] [3]) (./30_methods_intro.tex)
+(./31_methods_seq2seq.tex [4]
+Underfull \hbox (badness 10000) in paragraph at lines 10--10
+ [][][][][]$\OT1/cmr/m/n/9 https : / / github . com / facebookresearch / fastTe
+xt / blob / master / docs / crawl -[]
+ []
+
+
+
+pdfTeX warning: pdflatex (file ./encoder-decoder-model.pdf): PDF inclusion: fou
+nd PDF version <1.7>, but at most version <1.5> allowed
+<encoder-decoder-model.pdf, id=208, 597.23125pt x 845.1575pt>
+File: encoder-decoder-model.pdf Graphic file (type pdf)
+
+<use encoder-decoder-model.pdf>
+Package pdftex.def Info: encoder-decoder-model.pdf used on input line 18.
+(pdftex.def)             Requested size: 347.12354pt x 160.47655pt.
+) (./32_methods_icd10.tex [5 <./encoder-decoder-model.pdf>]
+
+pdfTeX warning: pdflatex (file ./classification-model.pdf): PDF inclusion: foun
+d PDF version <1.7>, but at most version <1.5> allowed
+<classification-model.pdf, id=267, 597.23125pt x 845.1575pt>
+File: classification-model.pdf Graphic file (type pdf)
+
+<use classification-model.pdf>
+Package pdftex.def Info: classification-model.pdf used on input line 12.
+(pdftex.def)             Requested size: 347.12354pt x 168.74522pt.
+) [6 <./classification-model.pdf>]
+(./40_experiments.tex [7]
+
+LaTeX Warning: No positions in optional float specifier.
+               Default added (so using `htbp') on input line 39.
+
+
+Underfull \hbox (badness 10000) in alignment at lines 52--52
+[][][][][][] 
+ []
+
+[8]
+
+LaTeX Warning: No positions in optional float specifier.
+               Default added (so using `htbp') on input line 80.
+
+
+Underfull \hbox (badness 10000) in alignment at lines 96--96
+[][][][][][] 
+ []
+
+[9]
+
+LaTeX Warning: No positions in optional float specifier.
+               Default added (so using `htbp') on input line 149.
+
+
+Underfull \hbox (badness 10000) in alignment at lines 181--181
+[][][][][] 
+ []
+
+) (./50_conclusion.tex
+Underfull \vbox (badness 10000) has occurred while \output is active []
+
+ [10])
+[11] (./wbi-eclef18.bbl [12] [13])
+Package atveryend Info: Empty hook `BeforeClearDocument' on input line 86.
+ [14]
+Package atveryend Info: Empty hook `AfterLastShipout' on input line 86.
+ (./wbi-eclef18.aux)
+Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 86.
+Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 86.
+Package rerunfilecheck Info: File `wbi-eclef18.out' has not changed.
+(rerunfilecheck)             Checksum: 1E390E13F082446C37F39D4D49F703FE;163.
+
+
+LaTeX Font Warning: Some font shapes were not available, defaults substituted.
+
+Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 86.
+ ) 
+Here is how much of TeX's memory you used:
+ 6446 strings out of 493117
+ 93916 string characters out of 6135433
+ 214118 words of memory out of 5000000
+ 9717 multiletter control sequences out of 15000+600000
+ 8147 words of font info for 29 fonts, out of 8000000 for 9000
+ 1141 hyphenation exceptions out of 8191
+ 29i,13n,24p,721b,482s stack positions out of 5000i,500n,10000p,200000b,80000s
+</usr/local/texlive/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb
+></usr/local/texlive/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb>
+</usr/local/texlive/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx9.pfb></
+usr/local/texlive/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></us
+r/local/texlive/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmr6.pfb></usr/l
+ocal/texlive/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb></usr/loca
+l/texlive/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmr9.pfb></usr/local/t
+exlive/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy9.pfb></usr/local/tex
+live/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb></usr/local/texl
+ive/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmti9.pfb></usr/local/texliv
+e/2014/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt9.pfb>
+Output written on wbi-eclef18.pdf (14 pages, 883858 bytes).
+PDF statistics:
+ 429 PDF objects out of 1000 (max. 8388607)
+ 290 compressed objects within 3 object streams
+ 88 named destinations out of 1000 (max. 500000)
+ 31 words of extra memory for PDF output out of 10000 (max. 10000000)
+
diff --git a/paper/wbi-eclef18.out b/paper/wbi-eclef18.out
new file mode 100644
index 0000000000000000000000000000000000000000..63184d7759d668bfef77f630ede31d2b389e1152
--- /dev/null
+++ b/paper/wbi-eclef18.out
@@ -0,0 +1 @@
+\BOOKMARK [0][-]{chapter.1}{WBI at CLEF eHealth 2018 Task 1: Language-independent ICD-10 coding using multi-lingual embeddings and recurrent neural networks}{}% 1
diff --git a/paper/wbi-eclef18.pdf b/paper/wbi-eclef18.pdf
index 70b1eb844748a78f3a7236fa4280cc5b646f1b68..b8a7adad3b91d391a2d20888ca961908ad28d351 100644
Binary files a/paper/wbi-eclef18.pdf and b/paper/wbi-eclef18.pdf differ