From 4122be21d68c12ab3936e1402d33c657d2f72144 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Mario=20Sa=CC=88nger?= <mario.saenger@student.hu-berlin.de> Date: Fri, 4 May 2018 23:42:12 +0200 Subject: [PATCH] Extend debugging options --- code_mario/clef18_task1.py | 119 ++++++++++++++++++++++------------ code_mario/dnn_classifiers.py | 6 +- code_mario/keras_extension.py | 31 +++++++-- 3 files changed, 108 insertions(+), 48 deletions(-) diff --git a/code_mario/clef18_task1.py b/code_mario/clef18_task1.py index 480a076..600866b 100644 --- a/code_mario/clef18_task1.py +++ b/code_mario/clef18_task1.py @@ -10,7 +10,7 @@ import os from argparse import Namespace from gensim.models import FastText from keras import Input, Model -from keras.callbacks import ModelCheckpoint +from keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, CSVLogger from keras.layers import Bidirectional, Dense, Dot, LSTM, Embedding from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer @@ -90,8 +90,8 @@ class Clef18Task1V2(LoggingMixin): config.max_cert_length, config.max_dict_length) model.summary(print_fn=self.logger.info) - cert_inputs = pad_sequences(train_pair_data["Cert_input"].values, maxlen=config.max_cert_length) - dict_inputs = pad_sequences(train_pair_data["Dict_input"].values, maxlen=config.max_dict_length) + cert_inputs = pad_sequences(train_pair_data["Cert_input"].values, maxlen=config.max_cert_length, padding="post") + dict_inputs = pad_sequences(train_pair_data["Dict_input"].values, maxlen=config.max_dict_length, padding="post") labels = train_pair_data["Label"].values self.logger.info("Start training of embedding model") @@ -177,45 +177,63 @@ class Clef18Task1V2(LoggingMixin): ] named_classifiers = [ - ("KNN", lambda num_classes: KNeighborsClassifier()), - ("KNN-Cos", lambda num_classes: KNeighborsClassifier(metric="cosine")), - ("SGD", lambda num_classes: SGDClassifier(verbose=1, random_state=42)), - ("DT", lambda num_classes: DecisionTreeClassifier(random_state=42)), - ("RF", lambda num_classes: RandomForestClassifier(verbose=1, random_state=42)), - ("LinearSVM", lambda num_classes: LinearSVC(max_iter=10000, verbose=1, random_state=42)), - - ("DNN-1-200", lambda num_classes: nnc.dense_network(cert_rnn.output.shape[1].value, num_classes, [200], False, 0.0, 50, 2, - callbacks=[ku.best_model_checkpointing_by_model_name("dnn-1-200")])), - ("DNN-1-300", lambda num_classes: nnc.dense_network(cert_rnn.output.shape[1].value, num_classes, [300], False, 0.0, 50, 2, - callbacks=[ku.best_model_checkpointing_by_model_name("dnn-1-300")])), - ("DNN-200-BN-DO", lambda num_classes: nnc.dense_network(cert_rnn.output.shape[1].value, num_classes, [200], True, 0.5, 50, 2, - callbacks=[ku.best_model_checkpointing_by_model_name("dnn-1-200-bn-do")])), - ("DNN-300-BN-DO", lambda num_classes: nnc.dense_network(cert_rnn.output.shape[1].value, num_classes, [300], True, 0.5, 50, 2, - callbacks=[ku.best_model_checkpointing_by_model_name("dnn-1-300-bn-do")])), - - ("DNN-200-100", lambda num_classes: nnc.dense_network(cert_rnn.output.shape[1].value, num_classes, [200, 100], False, 0.0, 50, 2, - callbacks=[ku.best_model_checkpointing_by_model_name("dnn-200-100")])), - ("DNN-200-200", lambda num_classes: nnc.dense_network(cert_rnn.output.shape[1].value, num_classes, [200, 200], False, 0.0, 50, 2, - callbacks=[ku.best_model_checkpointing_by_model_name("dnn-200-200")])), - ("DNN-200-100-BN-DO", lambda num_classes: nnc.dense_network(cert_rnn.output.shape[1].value, num_classes, [200, 100], True, 0.5, 50, 2, - callbacks=[ku.best_model_checkpointing_by_model_name("dnn-200-100-bn-do")])), - ("DNN-200-200-BN-DO", lambda num_classes: nnc.dense_network(cert_rnn.output.shape[1].value, num_classes, [200, 200], True, 0.5, 50, 2, - callbacks=[ku.best_model_checkpointing_by_model_name("dnn-200-200-bn-do")])), - - # ("Test-DNN-200-BN-DO", lambda num_classes: nnc.dense_network(cert_rnn.output.shape[1].value, num_classes, [200, 200], True, 0.5, 1, 4, - # callbacks=[ku.best_model_checkpointing_by_model_name("test-dnn-200-bn-do")])), - - ('DU1', lambda num_classes: DummyClassifier(strategy="stratified")), - ('DU2', lambda num_classes: DummyClassifier(strategy="most_frequent")) + ("KNN", lambda label, input_dim, output_dim, val_data: KNeighborsClassifier()), + ("KNN-Cos", lambda label, input_dim, output_dim, val_data: KNeighborsClassifier(metric="cosine")), + ("SGD", lambda label, input_dim, output_dim, val_data: SGDClassifier(verbose=1, random_state=42)), + ("DT", lambda label, input_dim, output_dim, val_data: DecisionTreeClassifier(random_state=42)), + ("RF", lambda label, input_dim, output_dim, val_data: RandomForestClassifier(verbose=1, random_state=42)), + ("LinearSVM", lambda label, input_dim, output_dim, val_data: LinearSVC(max_iter=10000, verbose=1, random_state=42)), + + ("DNN-200", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200], + batch_normalization=False, dropout_rate=0.0, epochs=10, batch_size=2)), + ("DNN-300", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-300", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300], + batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)), + + ("DNN-200-BN-DO", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200], + batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)), + ("DNN-300-BN-DO", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-300-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300], + batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)), + + ("DNN-200-100", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200-100", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 100], + batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)), + ("DNN-200-200", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200-200", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 200], + batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)), + ("DNN-300-200", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-300-200", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300, 200], + batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)), + + ("DNN-200-100-BN-DO", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200-100-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 100], + batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)), + ("DNN-200-200-BN-DO", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200-200-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 200], + batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)), + ("DNN-300-200-BN-DO", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-300-200-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300, 200], + batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)), + + ('DU1', lambda label, input_dim, output_dim, val_data: DummyClassifier(strategy="stratified")), + ('DU2', lambda label, input_dim, output_dim, val_data: DummyClassifier(strategy="most_frequent")) ] num_experiments = len(target_label_configs) * len(test_sets) * len(named_classifiers) cur_experiment = 1 + input_dim = cert_rnn.output.shape[1].value + + models_dir = os.path.join(AppContext.default().output_dir, "models") + os.makedirs(models_dir, exist_ok=True) + results = [] for target_label, target_column, label_encoder in target_label_configs: self.logger.info("Start evaluation experiments with label %s", target_label) - num_classes = len(label_encoder.classes_) + output_dim = len(label_encoder.classes_) complete_train_data = np.append(dict_embeddings, train_cert_embeddings, axis=0) complete_train_labels = np.append(config.dict_df[target_column].values, config.train_cert_df[target_column].values, axis=0) @@ -223,11 +241,11 @@ class Clef18Task1V2(LoggingMixin): for cl_name, classifier_factory in named_classifiers: self.logger.info("Start training of classifier %s", cl_name) - classifier = classifier_factory(num_classes) + classifier = classifier_factory(target_label, input_dim, output_dim, val_cert_embeddings) classifier.fit(complete_train_data, complete_train_labels) classifier_file_name = "cl_{}_{}.model".format(cl_name, target_label).lower() - classifier_file = os.path.join(AppContext.default().output_dir, classifier_file_name) + classifier_file = os.path.join(models_dir, classifier_file_name) try: joblib.dump(classifier, classifier_file) except: @@ -292,7 +310,7 @@ class Clef18Task1V2(LoggingMixin): except KeyError: self.logger.error("Can't create embedding for '%s'", word) - embedding = Embedding(len(word_index)+1, ft_model.vector_size, weights=[embedding_matrix]) + embedding = Embedding(len(word_index)+1, ft_model.vector_size, weights=[embedding_matrix], mask_zero=True) # Model 1: Learn a representation of a line originating from a death certificate input_certificate_line = Input((max_cert_length, )) @@ -530,6 +548,22 @@ class Clef18Task1V2(LoggingMixin): return k.models.load_model(args.emb_model) + def create_dnn_classifier(self, model_name, label: str, val_data: Tuple, **kwargs): + if val_data is not None: + monitor_loss = "val_loss" + else: + monitor_loss = "loss" + + callbacks = [ + ku.best_model_checkpointing_by_model_name(model_name), + ku.csv_logging_callback(model_name, label), + ku.early_stopping(monitor_loss, 5) + ] + + kwargs["callbacks"] = callbacks + return nnc.dense_network(**kwargs) + + class NegativeSampling(LoggingMixin): def __init__(self): @@ -548,7 +582,10 @@ class NegativeSampling(LoggingMixin): def default_strategy(self, num_negative_samples: int) -> Callable: def _sample(dictionary_df: DataFrame, line_icd10_code: str): negative_samples = dictionary_df.query("ICD10 != '%s'" % line_icd10_code) - negative_samples = negative_samples.sample(num_negative_samples) + + # Only necessary during development and tests with only very few examples + if len(negative_samples) > 0: + negative_samples = negative_samples.sample(min(num_negative_samples, len(negative_samples))) return negative_samples @@ -627,15 +664,17 @@ if __name__ == "__main__": clef_data = Clef18Task1Data() dictionary = clef_data.read_dictionary_by_language(args.lang) + #dictionary = dictionary.sample(1200) + certificates = clef_data.read_train_certifcates_by_language(args.lang) certificates = clef_data.filter_single_code_lines(certificates) certificates = clef_data.add_masked_icd10_column(certificates, 10) sentences = [["cat", "say", "meow"], ["dog", "say", "woof"]] - ft_model = FastText(sentences, min_count=1) + #ft_model = FastText(sentences, min_count=1) ft_embeddings = FastTextEmbeddings() - #ft_model = ft_embeddings.load_embeddings_by_language(args.lang) + ft_model = ft_embeddings.load_embeddings_by_language(args.lang) clef18_task1 = Clef18Task1V2() neg_sampling = NegativeSampling() diff --git a/code_mario/dnn_classifiers.py b/code_mario/dnn_classifiers.py index e4a4b25..b19efb6 100644 --- a/code_mario/dnn_classifiers.py +++ b/code_mario/dnn_classifiers.py @@ -12,14 +12,14 @@ from keras_extension import ExtendedKerasClassifier class NeuralNetworkClassifiers(object): @staticmethod - def dense_network(input_size: int, target_classes: int, hidden_layer_sizes: List[int], batch_normalization: bool, + def dense_network(input_dim: int, output_dim: int, hidden_layer_sizes: List[int], batch_normalization: bool, dropout_rate: float, epochs: int, batch_size: int, callbacks: List = None): def _build_model(): model = Sequential() for i, layer_size in enumerate(hidden_layer_sizes): if i == 0: - model.add(Dense(layer_size, input_shape=(input_size,), kernel_initializer=VarianceScaling(), activation="selu")) + model.add(Dense(layer_size, input_shape=(input_dim,), kernel_initializer=VarianceScaling(), activation="selu")) else: model.add(Dense(layer_size, kernel_initializer=VarianceScaling(), activation="selu")) @@ -29,7 +29,7 @@ class NeuralNetworkClassifiers(object): if dropout_rate and dropout_rate > 0.0: model.add(Dropout(dropout_rate)) - model.add(Dense(target_classes, activation="softmax")) + model.add(Dense(output_dim, activation="softmax")) model.compile(optimizer=Adam(), loss="sparse_categorical_crossentropy", metrics=['accuracy']) return model diff --git a/code_mario/keras_extension.py b/code_mario/keras_extension.py index 33d4116..732bbfc 100644 --- a/code_mario/keras_extension.py +++ b/code_mario/keras_extension.py @@ -2,7 +2,7 @@ import os import keras as k from logging import Logger -from keras.callbacks import Callback, ModelCheckpoint +from keras.callbacks import Callback, ModelCheckpoint, CSVLogger, EarlyStopping from keras.wrappers.scikit_learn import KerasClassifier from app_context import AppContext @@ -13,13 +13,33 @@ class KerasUtil(object): @staticmethod def best_model_checkpointing_by_model_name(model_name: str, monitor_loss: str = "loss"): - best_model_file = os.path.join(AppContext.default().output_dir, "%s_best.h5" % model_name) + models_dir = os.path.join(AppContext.default().output_dir, "models") + os.makedirs(models_dir, exist_ok=True) + + best_model_file = os.path.join(models_dir, "%s_best.h5" % model_name) return ModelCheckpoint(filepath=best_model_file, monitor=monitor_loss, save_best_only=True, verbose=1) @staticmethod def best_model_checkpointing_by_file_path(best_model_file: str, monitor_loss: str = "loss"): return ModelCheckpoint(filepath=best_model_file, monitor=monitor_loss, save_best_only=True, verbose=1) + @staticmethod + def early_stopping(monitor_loss: str, patience: int): + return EarlyStopping(monitor_loss, patience=patience, verbose=1) + + @staticmethod + def csv_logging_callback(model_name: str, label: str): + train_log_dir = os.path.join(AppContext.default().log_dir, "train_logs") + try: + os.makedirs(train_log_dir, exist_ok=True) + except: + print("Can't create train log directory: " + train_log_dir) + + log_file_name = "%s_%s.log" % (model_name, label) + training_log_file = os.path.join(train_log_dir, log_file_name) + + return CSVLogger(training_log_file, separator=";", append=True) + class LoggerCallback(Callback): @@ -53,7 +73,7 @@ class ExtendedKerasClassifier(KerasClassifier, LoggingMixin): checkpoint_callbacks = [callback for callback in self.sk_params["callbacks"] if isinstance(callback, ModelCheckpoint) and callback.save_best_only] if checkpoint_callbacks: - self.logger.info("Reloading model from %s", checkpoint_callbacks[0].filepath) + self.logger.debug("Reloading model from %s", checkpoint_callbacks[0].filepath) self.model = k.models.load_model(checkpoint_callbacks[0].filepath) self.re_fitted = False else: @@ -61,9 +81,10 @@ class ExtendedKerasClassifier(KerasClassifier, LoggingMixin): else: self.logger.debug("Can't find callbacks parameter. No callbacks configured?") else: - self.logger.debug("Model wasn't re-fitted -> re-using existing model") + #self.logger.debug("Model wasn't re-fitted -> re-using existing model") pass - self.logger.info("Classifer has %s classes", len(self.classes_)) + + #self.logger.debug("Classifer has %s classes", len(self.classes_)) return super(ExtendedKerasClassifier, self).predict(x, **kwargs) def __getstate__(self): -- GitLab