From 7ee72cb269e3c021bff85ebe1c376d97b672acb7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Mario=20Sa=CC=88nger?= <mario.saenger@student.hu-berlin.de> Date: Sat, 5 May 2018 01:07:50 +0200 Subject: [PATCH] Add initial version of embedding model 2 --- .../{clef18_task1.py => clef18_task1_emb1.py} | 26 +- code_mario/clef18_task1_emb2.py | 655 ++++++++++++++++++ code_mario/keras_extension.py | 2 +- 3 files changed, 668 insertions(+), 15 deletions(-) rename code_mario/{clef18_task1.py => clef18_task1_emb1.py} (97%) create mode 100644 code_mario/clef18_task1_emb2.py diff --git a/code_mario/clef18_task1.py b/code_mario/clef18_task1_emb1.py similarity index 97% rename from code_mario/clef18_task1.py rename to code_mario/clef18_task1_emb1.py index 425ca4f..cc95292 100644 --- a/code_mario/clef18_task1.py +++ b/code_mario/clef18_task1_emb1.py @@ -75,7 +75,7 @@ class EvaluationResult(object): self.accuracy = accuracy -class Clef18Task1V2(LoggingMixin): +class Clef18Task1Emb1(LoggingMixin): def __init__(self): LoggingMixin.__init__(self, self.__class__.__name__, AppContext.default().default_log_file) @@ -101,8 +101,8 @@ class Clef18Task1V2(LoggingMixin): self.logger.info("Start creation of validation pairs") val_pair_data = self.build_pairs(config.val_cert_df, config.dict_df, neg_sampling_strategy) - val_cert_inputs = pad_sequences(val_pair_data["Cert_input"].values, maxlen=config.max_cert_length) - val_dict_inputs = pad_sequences(val_pair_data["Dict_input"].values, maxlen=config.max_dict_length) + val_cert_inputs = pad_sequences(val_pair_data["Cert_input"].values, maxlen=config.max_cert_length, padding="post") + val_dict_inputs = pad_sequences(val_pair_data["Dict_input"].values, maxlen=config.max_dict_length, padding="post") val_gold_labels = val_pair_data["Label"].values model.fit([cert_inputs, dict_inputs], labels, epochs=epochs, batch_size=batch_size, @@ -125,11 +125,11 @@ class Clef18Task1V2(LoggingMixin): self.logger.info("Start evaluation of embedding model!") self.logger.info("Start creation of test pairs") - val_pair_data = self.build_pairs(config.test_cert_df, config.dict_df, neg_sampling_strategy) + test_pair_data = self.build_pairs(config.test_cert_df, config.dict_df, neg_sampling_strategy) - test_cert_inputs = pad_sequences(val_pair_data["Cert_input"].values, maxlen=config.max_cert_length) - test_dict_inputs = pad_sequences(val_pair_data["Dict_input"].values, maxlen=config.max_dict_length) - test_gold_labels = val_pair_data["Label"].values + test_cert_inputs = pad_sequences(test_pair_data["Cert_input"].values, maxlen=config.max_cert_length, padding="post") + test_dict_inputs = pad_sequences(test_pair_data["Dict_input"].values, maxlen=config.max_dict_length, padding="post") + test_gold_labels = test_pair_data["Label"].values self.logger.info("Start prediction of test labels") pred_labels = model.predict([test_cert_inputs, test_dict_inputs], verbose=1) @@ -475,15 +475,13 @@ class Clef18Task1V2(LoggingMixin): labels.append(1.0) + # Build negative samples # Find illegal ICD-10 for this line - #negative_samples = dictionary_data.query("ICD10 != '%s'" % line_icd10_code) - #negative_samples = negative_samples.sample(num_neg_samples) negative_samples = neg_sampling_strategy(certificate_data, line_icd10_code) - # Build negative samples - for i, dict_row in negative_samples.iterrows(): + for i, neg_row in negative_samples.iterrows(): certificate_vectors.append(cert_row["Token_ids"]) - dictionary_vectors.append(dict_row["Token_ids"]) + dictionary_vectors.append(neg_row["Token_ids"]) labels.append(0.0) @@ -668,7 +666,7 @@ if __name__ == "__main__": args = parser.parse_args() - AppContext.initialize_by_app_name(args.mode) + AppContext.initialize_by_app_name(Clef18Task1Emb1.__name__ + "-" + args.mode) clef_data = Clef18Task1Data() dictionary = clef_data.read_dictionary_by_language(args.lang) @@ -684,7 +682,7 @@ if __name__ == "__main__": ft_embeddings = FastTextEmbeddings() ft_model = ft_embeddings.load_embeddings_by_language(args.lang) - clef18_task1 = Clef18Task1V2() + clef18_task1 = Clef18Task1Emb1() clef18_task1.save_arguments(args) if args.mode == "train-emb": diff --git a/code_mario/clef18_task1_emb2.py b/code_mario/clef18_task1_emb2.py new file mode 100644 index 0000000..7cc15c7 --- /dev/null +++ b/code_mario/clef18_task1_emb2.py @@ -0,0 +1,655 @@ +from init import * + +import argparse +import numpy as np +import pandas as pd +import keras as k +import pickle +import os + +from argparse import Namespace +from gensim.models import FastText +from keras import Input, Model +from keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, CSVLogger +from keras.layers import Bidirectional, Dense, Dot, LSTM, Embedding, GlobalMaxPool1D +from keras.preprocessing.sequence import pad_sequences +from keras.preprocessing.text import Tokenizer +from pandas import DataFrame +from sklearn.dummy import DummyClassifier +from sklearn.ensemble import RandomForestClassifier +from sklearn.linear_model import SGDClassifier +from sklearn.metrics import f1_score, accuracy_score +from sklearn.model_selection import train_test_split +from sklearn.neighbors import KNeighborsClassifier +from sklearn.pipeline import Pipeline +from sklearn.preprocessing import LabelEncoder +from sklearn.svm import LinearSVC +from sklearn.tree import DecisionTreeClassifier +from tqdm import tqdm +from typing import Tuple, Dict, List, Callable +from sklearn.externals import joblib + +import ft_embeddings +from app_context import AppContext +from clef18_task1_data import Clef18Task1Data +from dnn_classifiers import NeuralNetworkClassifiers as nnc +from ft_embeddings import FastTextEmbeddings +from preprocessing import DataPreparationUtil as pdu +from keras_extension import KerasUtil as ku +from util import LoggingMixin + + +class ICD10LabelEncoders(object): + + def __init__(self, chapter_encoder: LabelEncoder, section_encoder: LabelEncoder, + subsection_encoder: LabelEncoder, code_encoder: LabelEncoder): + self.chapter_encoder = chapter_encoder + self.section_encoder = section_encoder + self.subsection_encoder = subsection_encoder + self.code_encoder = code_encoder + + +class Configuration(object): + + def __init__(self, train_df: DataFrame, val_df: DataFrame, test_df: DataFrame, max_length: int, ft_embedding_size: int, + label_column: str, label_encoders: ICD10LabelEncoders, keras_tokenizer: Tokenizer): + self.train_df = train_df + self.val_df = val_df + self.test_df = test_df + self.max_length = max_length + self.ft_embedding_size = ft_embedding_size + self.label_column = label_column + self.label_encoders = label_encoders + self.keras_tokenizer = keras_tokenizer + + +class EvaluationResult(object): + + def __init__(self, target_label: str, classifier_name: str, data_set_name: str, accuracy: float): + self.target_label = target_label + self.classifier_name = classifier_name + self.data_set_name = data_set_name + self.accuracy = accuracy + + +class Clef18Task1Emb2(LoggingMixin): + + def __init__(self): + LoggingMixin.__init__(self, self.__class__.__name__, AppContext.default().default_log_file) + + def train_embedding_model(self, config: Configuration, ft_model: FastText, neg_sampling_strategy: Callable, epochs: int, batch_size: int) -> Model: + self.logger.info("Start building training pairs") + train_pair_data = self.build_pairs(config.train_df, neg_sampling_strategy) + self.logger.info("Label distribution:\n%s", train_pair_data["Label"].value_counts()) + + self.logger.info("Start building embedding model") + model = self.build_embedding_model(config.keras_tokenizer.word_index, ft_model, config) + model.summary(print_fn=self.logger.info) + + cert_inputs = pad_sequences(train_pair_data["Cert_input"].values, maxlen=config.max_length, padding="post") + icd10_inputs = train_pair_data["ICD10_input"].values + labels = train_pair_data["Label"].values + + self.logger.info("Start training of embedding model") + best_model_file = os.path.join(AppContext.default().output_dir, "embedding_model_best.h5") + + if config.val_df is not None and len(config.test_df) > 0: + self.logger.info("Start creation of validation pairs") + val_pair_data = self.build_pairs(config.val_df, neg_sampling_strategy) + + val_cert_inputs = pad_sequences(val_pair_data["Cert_input"].values, maxlen=config.max_length, padding="post") + val_icd10_inputs = val_pair_data["ICD10_input"].values + val_gold_labels = val_pair_data["Label"].values + + model.fit([cert_inputs, icd10_inputs], labels, epochs=epochs, batch_size=batch_size, + validation_data=([val_cert_inputs, val_icd10_inputs], val_gold_labels), + callbacks=[ku.best_model_checkpointing_by_file_path(best_model_file, "val_loss")]) + else: + model.fit([cert_inputs, icd10_inputs], labels, epochs=epochs, batch_size=batch_size, + callbacks=[ku.best_model_checkpointing_by_file_path(best_model_file)]) + + model_file = os.path.join(AppContext.default().output_dir, "embedding_model_last.h5") + self.logger.info("Saving last model to %s", model_file) + model.save(model_file) + + self.logger.info("Reloading best embedding model from %s", best_model_file) + model = k.models.load_model(best_model_file) + + ## ---------------------------------------------------------------------------------------------------------- + + if config.val_df is not None and len(config.val_df) > 0: + self.logger.info("Start evaluation of embedding model!") + + self.logger.info("Start creation of test pairs") + test_pair_data = self.build_pairs(config.test_df, neg_sampling_strategy) + + test_cert_inputs = pad_sequences(test_pair_data["Cert_input"].values, maxlen=config.max_length, padding="post") + test_icd10_inputs = test_pair_data["ICD10_input"].values + test_gold_labels = test_pair_data["Label"].values + + self.logger.info("Start prediction of test labels") + pred_labels = model.predict([test_cert_inputs, test_icd10_inputs], verbose=1) + pred_labels = (pred_labels > 0.5).astype(float) + + f1_value = f1_score(test_gold_labels, pred_labels) + acc_value = accuracy_score(test_gold_labels, pred_labels) + + self.logger.info("Result: f1_score= %s | acc_score= %s", f1_value, acc_value) + + return model + + def train_and_evaluate_classifiers(self, emb_model: Model, config: Configuration, target_labels: List) -> List[EvaluationResult]: + self.logger.info("Start training and evaluation of classifier models") + + self.logger.info("Building embeddings for training data") + text_input = emb_model.inputs[0] + text_rnn = Model(inputs=text_input, outputs=emb_model.get_layer("text_rnn").output, name="Cert-RNN-Model") + + train_inputs = pad_sequences(config.train_df["Token_ids"].values, maxlen=config.max_length) + train_embeddings = text_rnn.predict(train_inputs, verbose=1) + self.logger.info("cert train input shape: %s", train_embeddings.shape) + + val_inputs = pad_sequences(config.val_df["Token_ids"].values, maxlen=config.max_length) + val_embeddings = text_rnn.predict(val_inputs, verbose=1) + self.logger.info("cert val input shape: %s", val_embeddings.shape) + + test_inputs = pad_sequences(config.test_df["Token_ids"].values, maxlen=config.max_length) + test_embeddings = text_rnn.predict(test_inputs, verbose=1) + self.logger.info("cert test input shape: %s", test_embeddings.shape) + + target_label_configs = self.get_label_configuration(target_labels, config.label_encoders) + + test_sets = [ + #("dict", dict_embeddings, config.dict_df), + ("cert-train", train_embeddings, config.train_df), + ("cert-val", val_embeddings, config.val_df), + ("cert-test", test_embeddings, config.test_df) + ] + + named_classifiers = [ + ("KNN", lambda label, input_dim, output_dim, val_data: KNeighborsClassifier()), + ("KNN-Cos", lambda label, input_dim, output_dim, val_data: KNeighborsClassifier(metric="cosine")), + ("SGD", lambda label, input_dim, output_dim, val_data: SGDClassifier(verbose=1, random_state=42)), + ("DT", lambda label, input_dim, output_dim, val_data: DecisionTreeClassifier(random_state=42)), + ("RF", lambda label, input_dim, output_dim, val_data: RandomForestClassifier(verbose=1, random_state=42)), + ("LinearSVM", lambda label, input_dim, output_dim, val_data: LinearSVC(max_iter=10000, verbose=1, random_state=42)), + + ("DNN-200", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200], + batch_normalization=False, dropout_rate=0.0, epochs=10, batch_size=2)), + ("DNN-300", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-300", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300], + batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)), + + ("DNN-200-BN-DO", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200], + batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)), + ("DNN-300-BN-DO", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-300-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300], + batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)), + + ("DNN-200-100", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200-100", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 100], + batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)), + ("DNN-200-200", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200-200", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 200], + batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)), + ("DNN-300-200", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-300-200", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300, 200], + batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)), + + ("DNN-200-100-BN-DO", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200-100-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 100], + batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)), + ("DNN-200-200-BN-DO", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-200-200-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 200], + batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)), + ("DNN-300-200-BN-DO", lambda label, input_dim, output_dim, val_data: + self.create_dnn_classifier("dnn-300-200-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300, 200], + batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)), + + ('DU1', lambda label, input_dim, output_dim, val_data: DummyClassifier(strategy="stratified")), + ('DU2', lambda label, input_dim, output_dim, val_data: DummyClassifier(strategy="most_frequent")) + ] + + num_experiments = len(target_label_configs) * len(test_sets) * len(named_classifiers) + cur_experiment = 1 + + input_dim = text_rnn.output.shape[1].value + + models_dir = os.path.join(AppContext.default().output_dir, "models") + os.makedirs(models_dir, exist_ok=True) + + results = [] + for target_label, target_column, label_encoder in target_label_configs: + self.logger.info("Start evaluation experiments with label %s", target_label) + output_dim = len(label_encoder.classes_) + + for cl_name, classifier_factory in named_classifiers: + self.logger.info("Start training of classifier %s", cl_name) + classifier = classifier_factory(target_label, input_dim, output_dim, val_embeddings) + classifier.fit(train_embeddings, config.train_df[target_column].values) + + classifier_file_name = "cl_{}_{}.model".format(cl_name, target_label).lower() + classifier_file = os.path.join(models_dir, classifier_file_name) + try: + joblib.dump(classifier, classifier_file) + except: + self.logger.error("Error while saving classifier %s to %s", cl_name, classifier_file) + + self.logger.info("Start evaluation of %s", cl_name) + for ts_name, inputs, data_frame in test_sets: + gold_labels = data_frame[target_column].values + + self.logger.info("Evaluate data set %s", ts_name) + prediction = classifier.predict(inputs) + acc_score = accuracy_score(gold_labels, prediction) + + self.logger.info("Evaluation result: label=%s | classifier=%s | data_set=%s | acc_score=%s", + target_label, cl_name, ts_name, acc_score) + results.append(EvaluationResult(target_label, cl_name, ts_name, acc_score)) + + self.logger.info("Finished experiment %s out of %s", cur_experiment, num_experiments) + cur_experiment += 1 + + return results + + def get_label_configuration(self, target_labels: List[str], icd10_encoders: ICD10LabelEncoders) -> List: + label_configs = [] + + for target_label in target_labels: + if target_label == "chap" or target_label == "chapter": + label_configs.append((target_label, "ICD10_chapter_encoded", icd10_encoders.chapter_encoder)) + elif target_label == "sect" or target_label == "section": + label_configs.append((target_label, "ICD10_section_encoded", icd10_encoders.section_encoder)) + elif target_label == "subs" or target_label == "subsection": + label_configs.append((target_label, "ICD10_subsection_encoded", icd10_encoders.subsection_encoder)) + elif target_label == "code" or target_label == "icd10": + label_configs.append((target_label, "ICD10_encoded", icd10_encoders.code_encoder)) + else: + self.logger.error("Can't create label configuration for label " + target_label) + + return label_configs + + def split_train_test(self, certificate_df: DataFrame, train_size: float, + stratified_splits: bool, label_column: str) -> Tuple[DataFrame, DataFrame]: + if stratified_splits: + self.logger.info("Creating stratified splits for column %s", label_column) + training_data, test_data = train_test_split(certificate_df, train_size=train_size, stratify=certificate_df[label_column]) + else: + self.logger.info("Creating non-stratified splits") + training_data, test_data = train_test_split(certificate_df, train_size=train_size) + + return training_data, test_data + + def build_embedding_model(self, word_index: Dict, ft_model: FastText, conf: Configuration): + # TODO: Make hyper-parameter configurable! + # TODO: Think about using CNNs instead of RNNs since we can have multiple ICD-10 per line! + + embedding_matrix = np.zeros((len(word_index) + 1, ft_model.vector_size)) + for word, i in word_index.items(): + try: + embedding_vector = ft_model[word] + if embedding_vector is not None: + # words not found in embedding index will be all-zeros. + embedding_matrix[i] = embedding_vector + except KeyError: + self.logger.error("Can't create embedding for '%s'", word) + + input_embedding = Embedding(len(word_index)+1, ft_model.vector_size, weights=[embedding_matrix], mask_zero=True) + + # Model 1: Learn a representation of a line originating from a death certificate or the dictionary + input_certificate_line = Input((conf.max_length, )) + cert_embeddings = input_embedding(input_certificate_line) + certificate_rnn = Bidirectional(LSTM(200), name="text_rnn")(cert_embeddings) + + # Model 2: Learn a representation of a ICD-10 code + num_icd10_codes = len(conf.label_encoders.code_encoder.classes_) + + icd10_input = Input((1, )) + icd10_embedding = Embedding(num_icd10_codes, 400, mask_zero=False)(icd10_input) + icd10_embedding = GlobalMaxPool1D()(icd10_embedding) + + # Calculate similarity between both representations + dot_product = Dot(axes=1, normalize=True)([certificate_rnn, icd10_embedding]) + + output = Dense(1, activation='sigmoid')(dot_product) + + # Create the primary training model + model = Model(inputs=[input_certificate_line, icd10_input], outputs=output, name="ICD10-Embedding-Model2") + model.compile(loss='binary_crossentropy', optimizer='adam', metrics=["accuracy"]) + + return model + + def prepare_data_set(self, cert_df: DataFrame, dict_df: DataFrame, ft_model: FastText, train_ratio: float, val_ratio: float, + strat_column: str, samples: int=None, stratified_splits: bool=False) -> Configuration: + + cert_df = cert_df[["RawText", "ICD10"]] + cert_df.columns = ["Text", "ICD10"] + + dict_df = dict_df[["DiagnosisText", "ICD10"]] + dict_df.columns = ["Text", "ICD10"] + + complete_df = pd.concat([cert_df, dict_df]) + self.logger.info("Concatenated certificate and dictionary entries. Found %s in total.", len(complete_df)) + + if samples: + self.logger.info("Sampling %s instances", samples) + complete_df = complete_df.sample(samples, random_state=42) + + self.logger.info("Splitting certificate lines into train and evaluation data set") + train_df, evaluation_df = self.split_train_test(complete_df, train_ratio, stratified_splits, strat_column) + self.logger.info("Finished splitting: train=%s instances, evaluation=%s instances", len(train_df), len(evaluation_df)) + + self.logger.info("Splitting evaluation data set into validation and test set") + val_df, test_df = self.split_train_test(evaluation_df, val_ratio, stratified_splits, strat_column) + + label_encoders = self.prepare_label_encoders(dict_df, cert_df) + keras_tokenizer = Tokenizer(oov_token="<UNK>") + + self.logger.info("Start preparation of training data (%s instances)", len(train_df)) + train_df, max_length = self.prepare_cert_dict_df(train_df, "train", label_encoders, keras_tokenizer) + + self.logger.info("Start preparation of validation data (%s instances)", len(val_df)) + val_df, _ = self.prepare_cert_dict_df(val_df, "validation", label_encoders, keras_tokenizer) + + self.logger.info("Start preparation of test cert data (%s instances)", len(test_df)) + test_df, _ = self.prepare_cert_dict_df(test_df, "test", label_encoders, keras_tokenizer) + + return Configuration(train_df, val_df, test_df, max_length, ft_model.vector_size, + strat_column, label_encoders, keras_tokenizer) + + def prepare_label_encoders(self, dict_df: DataFrame, cert_df: DataFrame) -> ICD10LabelEncoders: + self.logger.info("Fitting label encoder to ICD10 codes") + icd10_code_encoder = LabelEncoder() + icd10_code_encoder.fit(list([icd10.strip() for icd10 in dict_df["ICD10"].values]) + + list([icd10.strip() for icd10 in cert_df["ICD10"].values])) + self.logger.info("Found %s distinct ICD10 codes within the data set", len(icd10_code_encoder.classes_)) + + self.logger.info("Fitting label encoder to ICD10 chapters") + icd10_chapter_encoder = LabelEncoder() + icd10_chapter_encoder.fit(list([icd10.strip().lower()[0] for icd10 in dict_df["ICD10"].values]) + + list([icd10.strip().lower()[0] for icd10 in cert_df["ICD10"].values])) + self.logger.info("Found %s distinct ICD10 chapters within the data set", len(icd10_chapter_encoder.classes_)) + + self.logger.info("Fitting label encoder to ICD10 section") + icd10_section_encoder = LabelEncoder() + icd10_section_encoder.fit(list([icd10.strip().lower()[0:2] for icd10 in dict_df["ICD10"].values]) + + list([icd10.strip().lower()[0:2] for icd10 in cert_df["ICD10"].values])) + self.logger.info("Found %s distinct ICD10 sections within the data set", len(icd10_section_encoder.classes_)) + + self.logger.info("Fitting label encoder to ICD10 subsection") + icd10_subsection_encoder = LabelEncoder() + icd10_subsection_encoder.fit(list([icd10.strip().lower()[0:3] for icd10 in dict_df["ICD10"].values]) + + list([icd10.strip().lower()[0:3] for icd10 in cert_df["ICD10"].values])) + self.logger.info("Found %s distinct ICD10 subsections within the data set", len(icd10_subsection_encoder.classes_)) + + return ICD10LabelEncoders(icd10_chapter_encoder, icd10_section_encoder, icd10_subsection_encoder, icd10_code_encoder) + + def prepare_cert_dict_df(self, cert_dict_df: DataFrame, mode: str, icd10_encoders: ICD10LabelEncoders, + keras_tokenizer: Tokenizer) -> Tuple[DataFrame, int]: + pipeline = Pipeline([ + ("Extract-ICD10-chapter", pdu.extract_icd10_chapter("ICD10", "ICD10_chapter")), + ("Encode-ICD10-chapter", pdu.encode_labels("ICD10_chapter", "ICD10_chapter_encoded", + icd10_encoders.chapter_encoder, False)), + + ("Extract-ICD10-section", pdu.extract_icd10_section("ICD10", "ICD10_section")), + ("Encode-ICD10-section", pdu.encode_labels("ICD10_section", "ICD10_section_encoded", + icd10_encoders.section_encoder, False)), + + ("Extract-ICD10-subsection", pdu.extract_icd10_subsection("ICD10", "ICD10_subsection")), + ("Encode-ICD10-subsection", pdu.encode_labels("ICD10_subsection", "ICD10_subsection_encoded", + icd10_encoders.subsection_encoder, False)), + + ("Clean-ICD10-code", pdu.strip("ICD10")), + ("Encode-ICD10-code", pdu.encode_labels("ICD10", "ICD10_encoded", + icd10_encoders.code_encoder, False)), + + ("LowercaseText", pdu.to_lowercase("Text")), + ("TokenizeText", pdu.keras_sequencing("Text", "Token_ids", keras_tokenizer, (mode == "train"))) + ]) + + data_prepared = pipeline.fit_transform(cert_dict_df) + + if mode == "train": + max_length = max([len(array) for array in data_prepared["Token_ids"].values]) + else: + max_length = None + + return data_prepared, max_length + + def build_pairs(self, data_df: DataFrame, neg_sampling_strategy: Callable): + # FIXME: This can be implemented more efficiently! + # FIXME: Improve sampling of negative instances (especially if code is I-XXX sample other codes of the same class (e.g. I-YYY) + # FIXME: Use negative sample ratio (depending on true dictionary entries), e.g. 0.5 or 1.2 + + text_vectors = [] + icd10_codes = [] + labels = [] + + for i, data_row in tqdm(data_df.iterrows(), desc="build-pairs", total=len(data_df)): + # Build positive sample (based on training data) + text_vectors.append(data_row["Token_ids"]) + icd10_codes.append(data_row["ICD10_encoded"]) + labels.append(1.0) + + # Build negative samples + negative_samples = neg_sampling_strategy(data_df, data_row["ICD10"]) + + for i, neg_row in negative_samples.iterrows(): + text_vectors.append(data_row["Token_ids"]) + icd10_codes.append(neg_row["ICD10_encoded"]) + + labels.append(0.0) + + data = {"Cert_input": text_vectors, "ICD10_input": icd10_codes, "Label": labels} + return pd.DataFrame(data) + + def save_evaluation_results(self, eval_results: List[EvaluationResult]): + result_configurations = [ + ("results.csv", None), + ("results_by_classifier.csv", lambda result: result.classifier_name), + ("results_by_data_set.csv", lambda result: result.data_set_name), + ("results_by_label.csv", lambda result: result.target_label) + ] + + for file_name, sort_key in result_configurations: + results_file = os.path.join(AppContext.default().output_dir, file_name) + with open(results_file, "w", encoding="utf8") as result_writer: + if sort_key: + eval_results = sorted(eval_results, key=sort_key) + + for r in eval_results: + result_writer.write("%s\t%s\t%s\t%s\n" % (r.target_label, r.classifier_name, r.data_set_name, r.accuracy)) + result_writer.close() + + def save_arguments(self, arguments: Namespace): + arguments_file = os.path.join(AppContext.default().log_dir, "arguments.txt") + self.logger.info("Saving arguments to " + arguments_file) + + with open(arguments_file, 'w', encoding="utf8") as writer: + for key, value in arguments.__dict__.items(): + writer.write("%s=%s\n" % (str(key), str(value))) + writer.close() + + def save_configuration(self, configuration: Configuration): + label_encoder_file = os.path.join(AppContext.default().output_dir, "label_encoder.pk") + self.logger.info("Saving label encoder to " + label_encoder_file) + with open(label_encoder_file, 'wb') as encoder_writer: + pickle.dump(configuration.label_encoders, encoder_writer) + encoder_writer.close() + + keras_tokenizer_file = os.path.join(AppContext.default().output_dir, "keras_tokenizer.pk") + self.logger.info("Saving keras sequencer to " + keras_tokenizer_file) + with open(keras_tokenizer_file, 'wb') as keras_sequencer_writer: + pickle.dump(configuration.keras_tokenizer, keras_sequencer_writer) + keras_sequencer_writer.close() + + configuration_file = os.path.join(AppContext.default().output_dir, "configuration.pk") + self.logger.info("Saving configuration to " + configuration_file) + with open(configuration_file, 'wb') as train_conf_writer: + pickle.dump(configuration, train_conf_writer) + train_conf_writer.close() + + def reload_configuration(self, file_path: str): + self.logger.info("Reloading configuration from " + file_path) + with open(args.train_conf, 'rb') as train_conf_reader: + configuration = pickle.load(train_conf_reader) + train_conf_reader.close() + + return configuration + + def reload_embedding_model(self, emb_model_file: str): + self.logger.info("Reloading embedding model from " + emb_model_file) + return k.models.load_model(args.emb_model) + + def create_dnn_classifier(self, model_name, label: str, val_data: Tuple, **kwargs): + if val_data is not None: + monitor_loss = "val_loss" + else: + monitor_loss = "loss" + + callbacks = [ + ku.best_model_checkpointing_by_model_name(model_name), + ku.csv_logging_callback(model_name, label), + ku.early_stopping(monitor_loss, 5) + ] + + kwargs["callbacks"] = callbacks + return nnc.dense_network(**kwargs) + + +class NegativeSampling(LoggingMixin): + + def __init__(self): + LoggingMixin.__init__(self, self.__class__.__name__, AppContext.default().default_log_file) + + def get_strategy_by_name(self, name: str, args: Namespace) -> Callable: + #FIXME: Make args to dictionary + + if name == "def": + return self.default_strategy(args.num_neg_samples) + elif name == "ext1": + return self.extended1_strategy(args.num_neg_cha, args.num_neg_sec, args.num_neg_sub, args.num_neg_oth) + else: + raise AssertionError("Unsupported negative sampling strategy: " + name) + + def default_strategy(self, num_negative_samples: int) -> Callable: + def _sample(dictionary_df: DataFrame, line_icd10_code: str): + negative_samples = dictionary_df.query("ICD10 != '%s'" % line_icd10_code) + + # Only necessary during development and tests with only very few examples + if len(negative_samples) > 0: + negative_samples = negative_samples.sample(min(num_negative_samples, len(negative_samples))) + + return negative_samples + + return _sample + + def extended1_strategy(self, num_chapter_samples, num_section_samples, num_subsection_samples, num_other_samples): + def _sample(dictionary_df: DataFrame, icd10_code: str): + icd10_chapter = icd10_code[0].lower() + icd10_section = icd10_code[0:2].lower() + icd10_subsection = icd10_code[0:3].lower() + + chapter_samples = dictionary_df.query("ICD10 != '%s' & ICD10_chapter == '%s'" % (icd10_code, icd10_chapter)) + if len(chapter_samples) > 0: + chapter_samples = chapter_samples.sample(min(num_chapter_samples, len(chapter_samples))) + + section_samples = dictionary_df.query("ICD10 != '%s' & ICD10_section == '%s'" % (icd10_code, icd10_section)) + if len(section_samples) > 0: + section_samples = section_samples.sample(min(num_section_samples, len(section_samples))) + + subsection_samples = dictionary_df.query("ICD10 != '%s' & ICD10_subsection == '%s'" % (icd10_code, icd10_subsection)) + if len(subsection_samples) > 0: + subsection_samples = subsection_samples.sample(min(num_subsection_samples, len(subsection_samples))) + + exp_sim_samples = num_chapter_samples + num_section_samples + num_subsection_samples + act_sim_samples = len(chapter_samples) + len(section_samples) + len(subsection_samples) + + other_samples = dictionary_df.query("ICD10 != '%s' & ICD10_chapter != '%s'" % (icd10_code, icd10_chapter)) + other_samples = other_samples.sample(min(num_other_samples + (exp_sim_samples - act_sim_samples), len(other_samples))) + + # print("#Chapter samples: ", len(chapter_samples)) + # print("#Section samples: ", len(section_samples)) + # print("#Subsection samples: ", len(subsection_samples)) + # print("#Other samples: ", len(other_samples)) + + return pd.concat([chapter_samples, section_samples, subsection_samples, other_samples]) + return _sample + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(prog="CLEF2018") + subparsers = parser.add_subparsers(dest="mode") + + train_emb_parser = subparsers.add_parser("train-emb2") + train_emb_parser.add_argument("lang", help="Language to train on", choices=["it", "fr", "hu"]) + train_emb_parser.add_argument("--epochs", help="Number of epochs to train", default=10, type=int) + train_emb_parser.add_argument("--batch_size", help="Batch size during training", default=10, type=int) + train_emb_parser.add_argument("--train_ratio", help="Ratio of samples (from the complete data set) to use for training", default=0.8, type=float) + train_emb_parser.add_argument("--val_ratio", help="Ratio of samples (from the evaluation data set) to use for validation", default=0.3, type=float) + + train_emb_parser.add_argument("--samples", help="Number of instances to sample from the (original) training data", default=None, type=int) + train_emb_parser.add_argument("--strat_column", help="Column used to stratify the data sets", default="ICD10_masked", type=str) + train_emb_parser.add_argument("--strat_splits", help="Indicates whether to use stratified sampling", default=False, type=bool) + train_emb_parser.add_argument("--target_labels", help="Target columns for the classification models", default=["icd10"], action='append') + + train_emb_parser.add_argument("--neg_sampling", help="Negative sampling strategy to use", default="ext1", choices=["def", "ext1"]) + train_emb_parser.add_argument("--num_neg_samples", help="Number of negative samples to use (default strategy)", default=75, type=int) + train_emb_parser.add_argument("--num_neg_cha", help="Number of negative chapter samples to use (ext1 strategy)", default=10, type=int) + train_emb_parser.add_argument("--num_neg_sec", help="Number of negative section samples to use (ext1 strategy)", default=10, type=int) + train_emb_parser.add_argument("--num_neg_sub", help="Number of negative subsection samples to use (ext1 strategy)", default=10, type=int) + train_emb_parser.add_argument("--num_neg_oth", help="Number of negative other samples to use (ext1 strategy)", default=40, type=int) + + eval_classifier_parser = subparsers.add_parser("eval-cl") + eval_classifier_parser.add_argument("emb_model", help="Path to the embedding model to use") + eval_classifier_parser.add_argument("train_conf", help="Path to the training configuration dump") + eval_classifier_parser.add_argument("lang", help="Language to train on", choices=["it", "fr", "hu"]) + eval_classifier_parser.add_argument("--train_ratio", help="Ratio of samples (from the complete data set) to use for training", default=0.8, type=float) + eval_classifier_parser.add_argument("--val_ratio", help="Ratio of samples (from the evaluation data set) to use for validation", default=0.4, type=float) + eval_classifier_parser.add_argument("--samples", help="Number of instances to sample from the (original) training data", default=None, type=int) + eval_classifier_parser.add_argument("--strat_column", help="Column used to stratify the data sets", default="ICD10_masked", type=str) + eval_classifier_parser.add_argument("--strat_splits", help="Indicates whether to use stratified sampling", default=False, type=bool) + eval_classifier_parser.add_argument("--target_labels", help="Target columns for the classification models", default=["icd10"], action='append') + + args = parser.parse_args() + + AppContext.initialize_by_app_name(Clef18Task1Emb2.__name__ + "-" + args.mode) + + clef_data = Clef18Task1Data() + dictionary = clef_data.read_dictionary_by_language(args.lang) + #dictionary = dictionary.sample(1200) + + certificates = clef_data.read_train_certifcates_by_language(args.lang) + #certificates = clef_data.filter_single_code_lines(certificates) + #certificates = clef_data.add_masked_icd10_column(certificates, 10) + + sentences = [["cat", "say", "meow"], ["dog", "say", "woof"]] + #ft_model = FastText(sentences, min_count=1) + + ft_embeddings = FastTextEmbeddings() + ft_model = ft_embeddings.load_embeddings_by_language(args.lang) + + clef18_task1 = Clef18Task1Emb2() + clef18_task1.save_arguments(args) + + if args.mode == "train-emb2": + configuration = clef18_task1.prepare_data_set(certificates, dictionary, ft_model, args.train_ratio, args.val_ratio,args.strat_column, + args.samples, args.strat_splits) + clef18_task1.save_configuration(configuration) + + neg_sampling = NegativeSampling() + neg_sampling_strategy = neg_sampling.get_strategy_by_name(args.neg_sampling, args) + + embedding_model = clef18_task1.train_embedding_model(configuration, ft_model, neg_sampling_strategy, args.epochs, args.batch_size) + + elif args.mode == "eval-cl": + configuration = clef18_task1.reload_configuration(args.train_conf) + embedding_model = clef18_task1.reload_embedding_model(args.emb_model) + + eval_result = clef18_task1.train_and_evaluate_classifiers(embedding_model, configuration, args.target_labels) + clef18_task1.save_evaluation_results(eval_result) + + + diff --git a/code_mario/keras_extension.py b/code_mario/keras_extension.py index 732bbfc..81cbb64 100644 --- a/code_mario/keras_extension.py +++ b/code_mario/keras_extension.py @@ -73,7 +73,7 @@ class ExtendedKerasClassifier(KerasClassifier, LoggingMixin): checkpoint_callbacks = [callback for callback in self.sk_params["callbacks"] if isinstance(callback, ModelCheckpoint) and callback.save_best_only] if checkpoint_callbacks: - self.logger.debug("Reloading model from %s", checkpoint_callbacks[0].filepath) + #self.logger.debug("Reloading model from %s", checkpoint_callbacks[0].filepath) self.model = k.models.load_model(checkpoint_callbacks[0].filepath) self.re_fitted = False else: -- GitLab