From 8ca1a36a5f9a8d316d6a3e8249cb366d4dd2787a Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Mario=20Sa=CC=88nger?= <mario.saenger@student.hu-berlin.de>
Date: Mon, 25 Jun 2018 17:16:14 +0200
Subject: [PATCH] Fix table styles

---
 paper/40_experiments.tex | 12 ++++++------
 paper/references.bib     |  7 ++++---
 paper/wbi-eclef18.tex    |  5 +++++
 3 files changed, 15 insertions(+), 9 deletions(-)

diff --git a/paper/40_experiments.tex b/paper/40_experiments.tex
index 0793bcf..bc214fa 100644
--- a/paper/40_experiments.tex
+++ b/paper/40_experiments.tex
@@ -39,7 +39,7 @@ In contrast using the balanced data set the model reaches an accuracy of 0.899 (
 \begin{table}[]
 \label{tab:s2s}
 \centering
-\begin{tabularx}{0.9\textwidth}{p{3cm}|c|c|c|c|c}
+\begin{tabularx}{0.97\textwidth}{l|C{2.7cm}|C{1.75cm}|C{1.25cm}|C{1.75cm}|C{1.25cm}}
 \toprule
 \multirow{2}{*}{\textbf{Setting}} & \multirow{2}{*}{\textbf{Trained Epochs}}&\multicolumn{2}{c|}{\textbf{Train}}&\multicolumn{2}{c}{\textbf{Validation}} \\ 
 \cline{3-6}
@@ -80,7 +80,7 @@ In contrast, using the extended data set the model reaches an accuracy of 0.954
 \begin{table}[]
 \label{tab:icd10Classification}
 \centering
-\begin{tabularx}{0.9\textwidth}{p{2.25cm}|c|c|c|c|c} 
+\begin{tabularx}{0.985\textwidth}{p{2.75cm}|C{2.6cm}|C{1.75cm}|C{1.25cm}|C{1.75cm}|C{1.25cm}} 
 \toprule
 %\multirow{2}{*}{\textbf{Tokenization}}&\multirow{2}{*}{\textbf{Model}}&\multirow{2}{*}{\textbf{Trained Epochs}}&\multicolumn{2}{c|}{\textbf{Train}}&\multicolumn{2}{c}{\textbf{Validation}} \\
 %\cline{4-7} 
@@ -110,7 +110,7 @@ The scores are calculated using a prevalence-weighted macro-average across the o
 
 \begin{table}[t!]
 \centering
-\begin{tabular}{l|c|c|c}
+\begin{tabular}{L{3cm}|C{2cm}|C{2cm}|C{2cm}}
 \toprule
 \textbf{Model} &  \textbf{Precision} & \textbf{Recall} & \textbf{F-score} \\
 \hline
@@ -148,9 +148,9 @@ Worst results were obtained on the middle, French, corpus while the biggest corp
 
 \begin{table}[]
 \centering
-\begin{tabularx}{0.8\textwidth}{p{2cm}|p{3cm}|c|c|c}
+\begin{tabularx}{0.95\textwidth}{L{2cm}|L{3cm}|C{2cm}|C{2cm}|C{2cm}}
 \toprule
-\textbf{Language} & \textbf{Model} & \textbf{Precision} & \textbf{Recall} & \textbf{F-score}\\
+\textbf{Language} & \multicolumn{1}{c|}{\textbf{Model}} & \textbf{Precision} & \textbf{Recall} & \textbf{F-score}\\
 \hline
 \multirow{2}{*}{French}
 & Final-Balanced & 0.494 & 0.246 & 0.329 \\
@@ -176,7 +176,7 @@ Worst results were obtained on the middle, French, corpus while the biggest corp
 \cline{2-5}
 & Baseline      & 0,165 & 0.172 & 0.169 \\
 & Average       & 0.844 & 0.760 & 0.799 \\
-& Median        & 0,900 & 0.824 & 0.863 \\
+& Median        & 0.900 & 0.824 & 0.863 \\
 \bottomrule
 \end{tabularx}
 \caption{Test results of the final pipeline. Final-Balanced = DCEM-Balanced + ICD-10\_Extended. Final-Full = DCEM-Full + ICD-10\_Extended}
diff --git a/paper/references.bib b/paper/references.bib
index 1dbd549..b60d956 100644
--- a/paper/references.bib
+++ b/paper/references.bib
@@ -269,7 +269,8 @@ The system proposed in this study provides automatic identification and characte
 	booktitle = {{CLEF} 2018 {Evaluation} {Labs} and {Workshop}: {Online} {Working} {Notes}},
 	publisher = {CEUR-WS},
 	author = {Névéol, Aurélie and Robert, Aude and Grippo, F and Morgand, C and Orsi, C and Pelikán, L and Ramadier, Lionel and Rey, Grégoire and Zweigenbaum, Pierre},
-	year = {2018}
+	year = {2018},
+	month = {September}
 }
 
 @inproceedings{cho_learning_2014,
@@ -279,7 +280,7 @@ The system proposed in this study provides automatic identification and characte
 	booktitle = {Proceedings of the 2014 {Conference} on {Empirical} {Methods} in {Natural} {Language} {Processing} ({EMNLP})},
 	publisher = {Association for Computational Linguistics},
 	author = {Cho, Kyunghyun and van Merrienboer, Bart and Gulcehre, Caglar and Bahdanau, Dzmitry and Bougares, Fethi and Schwenk, Holger and Bengio, Yoshua},
-	month = oct,
+	month = {October},
 	year = {2014},
 	pages = {1724--1734},
 	file = {Full Text PDF:/Users/mario/Zotero/storage/4NE9THT8/Cho et al. - 2014 - Learning Phrase Representations using RNN Encoder–.pdf:application/pdf}
@@ -293,7 +294,7 @@ The system proposed in this study provides automatic identification and characte
 	urldate = {2018-05-23},
 	journal = {CEUR workshop proceedings},
 	author = {Névéol, Aurélie and Cohen, K. Bretonnel and Grouin, Cyril and Hamon, Thierry and Lavergne, Thomas and Kelly, Liadh and Goeuriot, Lorraine and Rey, Grégoire and Robert, Aude and Tannier, Xavier and Zweigenbaum, Pierre},
-	month = sep,
+	month = {September},
 	year = {2016},
 	pmid = {29308065},
 	pmcid = {PMC5756095},
diff --git a/paper/wbi-eclef18.tex b/paper/wbi-eclef18.tex
index 0448951..2609470 100644
--- a/paper/wbi-eclef18.tex
+++ b/paper/wbi-eclef18.tex
@@ -3,6 +3,7 @@
 % Version 2.20 of 2017/10/04
 %
 \documentclass[runningheads]{llncs}
+\pagestyle{empty}
 \usepackage[utf8]{inputenc} 
 \usepackage[english]{babel} 
 \usepackage{color}
@@ -10,6 +11,10 @@
 \usepackage{booktabs}
 \usepackage[hyphens]{url}
 \usepackage{hyperref}
+\usepackage{array}
+
+\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
+\newcolumntype{C}[1]{>{\centering\let\newline\\\arraybackslash\hspace{0pt}}m{#1}}
 
  
 % Used for displaying a sample figure. If possible, figure files should
-- 
GitLab