diff --git a/code_jurica/loader.py b/code_jurica/loader.py
index 72e7b7e5b90d582f837282d7228ab1ddceeaee79..cd7410b1c7b59ee5d6caeb287477c7f2801a048a 100644
--- a/code_jurica/loader.py
+++ b/code_jurica/loader.py
@@ -11,6 +11,7 @@ from keras.utils import to_categorical
 kerasTokenizer = Tokenizer()
 tokenizer = TokenizePreprocessor()
 prepareData = prepareData()
+SEED = 777
 
 frCorpora, frErrors = prepareData.prepareData('FR')
 itCorpora, itErrors = prepareData.prepareData('IT')
diff --git a/code_jurica/test.py b/code_jurica/test.py
index c3dd296ff5b960e696f538e150c0653055209a2b..03febd111568e01d877de7e9ec2f0f0550f37e55 100644
--- a/code_jurica/test.py
+++ b/code_jurica/test.py
@@ -4,6 +4,8 @@ from _layers import  Attention
 from keras.models import Model, load_model as keras_load_model
 from keras.layers import Input
 
+from loader import *
+
 # ICD 10 STUFF
 icd10_model = keras_load_model('models/icd10Classification_attention.h5', custom_objects={'Attention':Attention})
 with open('models/icd10_tokenizer.p', 'rb') as handle:
@@ -17,10 +19,13 @@ with open('models/icd10_mappings.p', 'rb') as handle:
 S2S_model = keras_load_model('models/s2s.h5', custom_objects={'Attention':Attention})
 with open('models/s2s_source_tokenizer.p', 'rb') as handle:
     s2s_source_tokenizer = pickle.load(handle)
+source_vocab = s2s_source_tokenizer.word_index
 source_index_to_word_dict = {v:k.strip() for k,v in s2s_source_tokenizer.word_index.items()}
 
 with open('models/s2s_target_tokenizer.p', 'rb') as handle:
     s2s_target_tokenizer = pickle.load(handle)
+
+target_vocab =s2s_target_tokenizer.word_index
 target_index_to_word_dict = {v:k.strip() for k,v in s2s_target_tokenizer.word_index.items()}
 # S2S STUFF
 
@@ -31,15 +36,15 @@ x, state_h, state_c = S2S_model.get_layer('lstm_1').output
 encoder_states = [state_h, state_c]
 
 embed_2 = S2S_model.get_layer('embedding_2').output
-decoder_LSTM = S2S_model.get_layer('lstm_2').output
-decoder_dense = S2S_model.get_layer('dense_1').output
+decoder_LSTM = S2S_model.get_layer('lstm_2')
+decoder_dense = S2S_model.get_layer('dense_1')
 
 # Encoder inference model
 encoder_model_inf = Model(encoder_input, encoder_states)
 
 # Decoder inference model
-decoder_state_input_h = Input(shape=(256,))
-decoder_state_input_c = Input(shape=(256,))
+decoder_state_input_h = Input(shape=(256,), name='inf_input1')
+decoder_state_input_c = Input(shape=(256,), name='inf_input2')
 decoder_input_states = [decoder_state_input_h, decoder_state_input_c]
 
 decoder_out, decoder_h, decoder_c = decoder_LSTM(embed_2, initial_state=decoder_input_states)
@@ -49,10 +54,14 @@ decoder_out = decoder_dense(decoder_out)
 decoder_model_inf = Model(inputs=[decoder_input] + decoder_input_states,
                           outputs=[decoder_out] + decoder_states )
 
+encoder_model_inf.summary()
+decoder_model_inf.summary()
+
 def decode_seq(inp_seq):
+
     states_val = encoder_model_inf.predict(inp_seq)
 
-    target_seq = np.zeros((1, target_max_sequence))
+    target_seq = np.zeros((1, S2S_model.get_layer('input_2').output_shape[1]))
     target_seq[0, 0] = target_vocab['sos']
 
     translated_sent = []
@@ -65,27 +74,33 @@ def decode_seq(inp_seq):
         try:
             sampled_fra_char = target_index_to_word_dict[max_val_index]
         except KeyError:
-            # stop_condition = True
             sampled_fra_char = 'eos'
 
         translated_sent.append(sampled_fra_char)
         translated_index.append(max_val_index)
 
-        if ((sampled_fra_char == 'eos') or (len(translated_sent) > target_max_sequence)):
+        if ((sampled_fra_char == 'eos') or (len(translated_sent) > S2S_model.get_layer('input_2').output_shape[1])):
             stop_condition = True
 
-        target_seq = np.zeros((1, target_max_sequence))
+        target_seq = np.zeros((1, S2S_model.get_layer('input_2').output_shape[1]))
         target_seq[0, 0] = max_val_index
         states_val = [decoder_h, decoder_c]
 
     return translated_sent[:-1], translated_index[:-1]
 
+y_true = []
+y_pred = []
 
-for seq_index in tqdm.tqdm(range(len(source_val))):
-# for seq_index in range(10):
-    inp_seq = source_val[seq_index:seq_index+1]
+# for seq_index in range(len(source_corpus)):
+for seq_index in range(10):
+    inp_seq = source_corpus[seq_index:seq_index + 1]
+    inp_seq = s2s_source_tokenizer.texts_to_sequences(inp_seq)
+    inp_seq = pad_sequences(inp_seq, maxlen=S2S_model.get_layer('input_1').output_shape[1], padding='post')
     translated_sent, translated_index= decode_seq(inp_seq)
 
+    target_seq = target_corpus[seq_index:seq_index + 1]
+    target_seq = s2s_target_tokenizer.texts_to_sequences(target_seq)
+
     # PREDICT ICD10
     source_word_sequence = kerasTokenizer.texts_to_sequences([" ".join(translated_sent)])
     word_sequence = pad_sequences(source_word_sequence, maxlen=icd10_model.layers[0].input_shape[1], padding='post')
@@ -93,23 +108,23 @@ for seq_index in tqdm.tqdm(range(len(source_val))):
     # print(icd10_code_index, type(icd10_code_index))
     max_val_index = np.argmax(icd10_code_index, axis=1)[0]
     # print(max_val_index)
-    icd10_label = encoded_Y.inverse_transform(max_val_index)
-
-    # print('-')
-    # target_index = np.trim_zeros(target_val[seq_index], 'b')[1:-1]
-    # print('Target indexes:', target_index)
-    # print('Decoded indexes:', translated_index)
-    #
-    # print('Target sentence:', " ".join([target_index_to_word_dict[x] for x in target_index]))
-    # print('Decoded sentence:', " ".join(translated_sent))
-    #
-    # print('Target ICD-10:', labels_val[seq_index])
-    # print('Predict ICD-10:', icd10_label)
-
-    y_true.append(labels_val[seq_index])
+    icd10_label = icd10Encoder.inverse_transform(max_val_index)
+
+    print('-')
+    target_index = target_seq[0]
+    print('Target indexes:', target_index)
+    print('Decoded indexes:', translated_index)
+
+    print('Target sentence:', " ".join([target_index_to_word_dict[x] for x in target_index]))
+    print('Decoded sentence:', " ".join(translated_sent))
+
+    print('Target ICD-10:', labels[seq_index])
+    print('Predict ICD-10:', icd10_label)
+
+    y_true.append(labels[seq_index])
     y_pred.append(icd10_label)
 
 report = classification_report(y_true, y_pred)
 report_df = report_to_df(report)
-report_df.to_csv('logs/classification_report.csv')
+report_df.to_csv('logs/classification_report_test.csv')
 print(report_df)
\ No newline at end of file