% This is samplepaper.tex, a sample chapter demonstrating the
% LLNCS macro package for Springer Computer Science proceedings;
% Version 2.20 of 2017/10/04
%
\documentclass[runningheads]{llncs}
\usepackage[utf8]{inputenc} 
\usepackage[english]{babel} 
\usepackage{color}
 
% Used for displaying a sample figure. If possible, figure files should
% be included in EPS format.
\usepackage{graphicx}

% If you use the hyperref package, please uncomment the following line
% to display URLs in blue roman font according to Springer's eBook style:
% \renewcommand\UrlFont{\color{blue}\rmfamily}

\begin{document}

\newcommand{\nm}[1]{\textcolor{green}{Mario: #1}\\}
\newcommand{\nj}[1]{\textcolor{blue}{Jurica: #1}\\}
\newcommand{\td}[1]{\textcolor{red}{\uppercase{#1}}}

\title{WBI at CLEF eHealth 2018 Task 1: Language-independent ICD-10 coding using multi-lingual embeddings and recurrent neural networks}

% If the paper title is too long for the running head, you can set
% an abbreviated paper title here
\titlerunning{ICD-10 coding using multi-lingual embeddings and RNNs}

\author{Jurica \v{S}eva\inst{1} \and
Mario Sänger\inst{1} \and
Ulf Leser\inst{1}}

% First names are abbreviated in the running head.
% If there are more than two authors, 'et al.' is used.
\authorrunning{\v{S}eva et al.}

\institute{Humboldt-Universität zu Berlin, Knowledge Management in
Bioinformatics, \\ Berlin, Germany\\
\email{seva,saengema,leser@informatik.hu-berlin.de}}
%
\maketitle              % typeset the header of the contribution
% 
\begin{abstract}
This paper describes the participation of the WBI team in the CLEF eHealth 2018 shared task 1 (``Multilingual Information Extraction - ICD-10 coding'').
Our approach builds on two recurrent neural networks models to extract and classify causes of death from French, Italian and Hungarian death certificates.
First, we employ a LSTM-based sequence-to-sequence model to obtain a symptom name from each death certificate line.
We then utilize a bidirectional LSTM model with attention mechanism to assign the respective ICD-10 codes to the received symptom names.
Our model achieves \ldots

\keywords{ICD-10 coding \and Biomedical information extraction \and Multi-lingual sequence-to-sequence model \and Represention learning \and Attention mechanism}
  
\end{abstract}  

\section{Introduction} 
\input{10_introduction}

\section{Related work}
\input{20_related_work} 
 
\section{Methods}
\label{sec:methods}
\input{30_methods_intro}
\input{31_methods_seq2seq}
\input{32_methods_icd10} 
 
\section{Experiments and Results} 
\input{40_experiments}

\section{Conclusion and Future Work}
\input{50_conclusion} 

\bibliography{references}
\bibliographystyle{splncs04}

\end{document}