% This is samplepaper.tex, a sample chapter demonstrating the % LLNCS macro package for Springer Computer Science proceedings; % Version 2.20 of 2017/10/04 % \documentclass[runningheads]{llncs} \usepackage[utf8]{inputenc} \usepackage[english]{babel} \usepackage{color} % Used for displaying a sample figure. If possible, figure files should % be included in EPS format. \usepackage{graphicx} % If you use the hyperref package, please uncomment the following line % to display URLs in blue roman font according to Springer's eBook style: % \renewcommand\UrlFont{\color{blue}\rmfamily} \begin{document} \newcommand{\nm}[1]{\textcolor{green}{Mario: #1}\\} \newcommand{\nj}[1]{\textcolor{blue}{Jurica: #1}\\} \newcommand{\td}[1]{\textcolor{red}{\uppercase{#1}}} \title{WBI at CLEF eHealth 2018 Task 1: Language-independent ICD-10 coding using multi-lingual embeddings and recurrent neural networks} % If the paper title is too long for the running head, you can set % an abbreviated paper title here \titlerunning{ICD-10 coding using multi-lingual embeddings and RNNs} \author{Jurica \v{S}eva\inst{1} \and Mario Sänger\inst{1} \and Ulf Leser\inst{1}} % First names are abbreviated in the running head. % If there are more than two authors, 'et al.' is used. \authorrunning{\v{S}eva et al.} \institute{Humboldt-Universität zu Berlin, Knowledge Management in Bioinformatics, \\ Berlin, Germany\\ \email{seva,saengema,leser@informatik.hu-berlin.de}} % \maketitle % typeset the header of the contribution % \begin{abstract} This paper describes the participation of the WBI team in the CLEF eHealth 2018 shared task 1 (``Multilingual Information Extraction - ICD-10 coding''). Our approach builds on two recurrent neural networks models to extract and classify causes of death from French, Italian and Hungarian death certificates. First, we employ a LSTM-based sequence-to-sequence model to obtain a symptom name from each death certificate line. We then utilize a bidirectional LSTM model with attention mechanism to assign the respective ICD-10 codes to the received symptom names. Our model achieves \ldots \keywords{ICD-10 coding \and Biomedical information extraction \and Multi-lingual sequence-to-sequence model \and Represention learning \and Attention mechanism} \end{abstract} \section{Introduction} \input{10_introduction} \section{Related work} \input{20_related_work} \section{Methods} \label{sec:methods} \input{30_methods_intro} \input{31_methods_seq2seq} \input{32_methods_icd10} \section{Experiments and Results} \input{40_experiments} \section{Conclusion and Future Work} \input{50_conclusion} \bibliography{references} \bibliographystyle{splncs04} \end{document}