Skip to content
Snippets Groups Projects
Commit 18c55788 authored by Martin Kuehn's avatar Martin Kuehn
Browse files

Upload New File

parent 1295f2ba
No related merge requests found
import math
import numpy as np
import pandas as pd
from numpy import vstack
from numpy import sqrt
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from torch import Tensor
from torch.nn import Linear
from torch.nn import Sigmoid
from torch.nn import Module
from torch.optim import SGD
from torch.nn import MSELoss
from torch.nn.init import xavier_uniform_
import torch
import os.path
import matplotlib.pyplot as plt
import matplotlib as mpl
class CSVDataset(Dataset):
# load the dataset
def __init__(self, path, numfeatures, normalize):
# load the csv file as a dataframe
df = pd.read_csv(path, header=None)
if normalize:
df = pd.DataFrame(MinMaxScaler().fit_transform(df))
# store the inputs and outputs
self.X = df.values[:, :numfeatures].astype('float32')
self.y = df.values[:, numfeatures:].astype('float32')
# number of rows in the dataset
def __len__(self):
return len(self.X)
# get a row at an index
def __getitem__(self, idx):
return [self.X[idx], self.y[idx]]
# get indexes for train and test rows
def get_splits(self, n_test=0.33):
# determine sizes
test_size = round(n_test * len(self.X))
train_size = len(self.X) - test_size
# calculate the split
return random_split(self, [train_size, test_size])
class MLP(Module):
# define model elements
def __init__(self, numfeatures):
super(MLP, self).__init__()
# input to first hidden layer
self.hidden1 = Linear(numfeatures, 500)
xavier_uniform_(self.hidden1.weight)
self.act1 = Sigmoid()
# second hidden layer
self.hidden2 = Linear(500, 200)
xavier_uniform_(self.hidden2.weight)
self.act2 = Sigmoid()
# third hidden layer
self.hidden3 = Linear(200, 100)
xavier_uniform_(self.hidden2.weight)
self.act3 = Sigmoid()
# fourth hidden layer and output
self.hidden4 = Linear(100, 6)
xavier_uniform_(self.hidden3.weight)
# forward propagate input
def forward(self, X):
# input to first hidden layer
X = self.hidden1(X)
X = self.act1(X)
# second hidden layer
X = self.hidden2(X)
X = self.act2(X)
# third hidden layer
X = self.hidden3(X)
X = self.act3(X)
# third hidden layer and output
X = self.hidden4(X)
return X
# prepare the dataset
def prepare_data(path, numfeatures):
# load the dataset
dataset = CSVDataset(path, numfeatures, normalize=True)
# print(dataset)
# scaler = MinMaxScaler(0, 1)
# scaler.fit(dataset)
# scaler.transform(dataset)
# print(dataset)
# calculate split
train, test = dataset.get_splits()
# prepare data loaders
train_dl = DataLoader(train, batch_size=32, shuffle=True, pin_memory=True)
test_dl = DataLoader(test, batch_size=1024, shuffle=False, pin_memory=True)
return train_dl, test_dl
# train the model
def train_model(train_dl, model, device):
# define the optimization
criterion = MSELoss()
optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
# enumerate epochs
for epoch in range(3):
# enumerate mini batches
for i, (inputs, targets) in enumerate(train_dl):
inputs, targets = inputs.to(device), targets.to(device)
# clear the gradients
optimizer.zero_grad()
# compute the model output
yhat = model(inputs)
# calculate loss
loss = criterion(yhat, targets)
# credit assignment
loss.backward()
# update model weights
optimizer.step()
# evaluate the model
def evaluate_model(test_dl, model, device):
predictions, actuals = list(), list()
for i, (inputs, targets) in enumerate(test_dl):
inputs, targets = inputs.to(device), targets.to(device)
# evaluate the model on the test set
yhat = model(inputs)
# retrieve numpy array
yhat.cpu()
yhat = yhat.detach().numpy()
actual = targets.numpy()
actual = actual.reshape((len(actual), 1))
# store
predictions.append(yhat)
actuals.append(actual)
predictions, actuals = vstack(predictions), vstack(actuals)
# calculate mse
mse = mean_squared_error(actuals, predictions)
return mse
# make a class prediction for one row of data
def predict(row, model):
# convert row to data
row = Tensor([row])
# make prediction
yhat = model(row)
# retrieve numpy array
yhat = yhat.detach().numpy()
return yhat
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
# prepare the data
path = 'Datasets\\XFEL_KW0_Results_2.csv'
numfeatures = 8
train_dl, test_dl = prepare_data(path, numfeatures)
# define the network
model = MLP(numfeatures)
model = model.to(device)
if (os.path.isfile("model.pt")):
# load the model
model.load_state_dict(torch.load("model.pt"))
model.eval()
else:
# train the model
print(model)
train_model(train_dl, model, device)
torch.save(model.state_dict(), "model.pt")
# evaluate the model
mse = evaluate_model(test_dl, model, device)
print('MSE: %.3f, RMSE: %.3f' % (mse, sqrt(mse)))
# # make a single prediction (expect class=1)
# row = [0.00632, 18.00, 2.310, 0, 0.5380, 6.5750, 65.20, 4.0900, 1, 296.0, 15.30, 396.90, 4.98]
# yhat = predict(row, model)
# print('Predicted: %.3f' % yhat)
# START: Plotte dataset
# datasetShape = dataset.shape
# divider = 1000
# filler = np.arange(math.ceil(datasetShape[0] / divider))
# dataset = np.array_split(dataset, divider)
# # print(dataset)
# # print(filler.shape)
# # print(dataset[0][0].shape)
# # print(datasetShape, filler)
# numfeatures = datasetShape[1]
# gs = mpl.gridspec.GridSpec(math.ceil(math.sqrt(numfeatures)), math.ceil(math.sqrt(numfeatures)))
# fig = plt.figure()
# for i in range(numfeatures):
# ax = fig.add_subplot(gs[i])
# ax.scatter(filler, dataset[0][i])
# # ax.tight_layout()
# plt.show()
# ENDE: Plotte dataset
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment