Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
Semesterprojekt Gruppe A
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
1
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Martin Kuehn
Semesterprojekt Gruppe A
Commits
19cff8e9
Commit
19cff8e9
authored
3 years ago
by
Martin Kuehn
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
d4b2d960
Branches
kuehnmar-master-patch-29976
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Aufgabe 2: Spectrometer Alignment/Spectrometer_Alignment.py
+146
-0
146 additions, 0 deletions
Aufgabe 2: Spectrometer Alignment/Spectrometer_Alignment.py
with
146 additions
and
0 deletions
Aufgabe 2: Spectrometer Alignment/Spectrometer_Alignment.py
0 → 100644
+
146
−
0
View file @
19cff8e9
import
h5py
import
numpy
as
np
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
torch.optim
as
optim
from
h5py
import
Dataset
from
sklearn.preprocessing
import
MinMaxScaler
from
torch.utils.data
import
DataLoader
from
torch.optim
import
SGD
,
Adam
from
torch.nn
import
Linear
,
Sigmoid
,
Module
,
MSELoss
,
BCELoss
from
tqdm
import
tqdm
# f hat 100k keys, jeder key hat eine hdf5 group als value
# jede group hat 2 keys. in key 'X' ist ein 2d numpy array
# welches die 200x200 pixel des bildes speichert (dset[70:71,:]
# zugriff auf zeile 71) und in key'Y' sind die drei
# korrespondierenden achsenwerte der kamera X, Y und Z
def
prepare_data
(
path
):
# load h5 file
sims
=
3000
# only half the data
x
=
[]
y
=
[]
with
h5py
.
File
(
path
,
'
r
'
)
as
f
:
for
key
in
range
(
sims
):
X
=
np
.
array
(
f
[
'
/
'
+
str
(
key
)
+
'
/X
'
])
Y
=
np
.
array
(
f
[
'
/
'
+
str
(
key
)
+
'
/Y
'
])
X
=
MinMaxScaler
().
fit_transform
(
X
)
# normalise the data between 0 and 1
# Y = MinMaxScaler().fit_transform(Y)
# print(Y[:])
if
np
.
amax
(
X
)
>
0
:
# ignore the blank images (no data)
x
.
append
(
X
)
y
.
append
(
Y
)
device
=
torch
.
device
(
'
cuda:0
'
if
torch
.
cuda
.
is_available
()
else
'
cpu
'
)
print
(
device
)
x
=
torch
.
tensor
(
x
,
dtype
=
torch
.
float32
,
device
=
device
)
# input
y
=
torch
.
tensor
(
y
,
dtype
=
torch
.
float32
,
device
=
device
)
# output
print
(
'
x.shape
'
,
np
.
shape
(
x
))
print
(
'
y.shape
'
,
np
.
shape
(
y
))
print
(
x
.
element_size
()
*
x
.
nelement
())
# split test and train data
data_length
=
np
.
shape
(
x
)[
0
]
train_length
=
data_length
-
1000
train_x
=
x
[
0
:
train_length
]
test_x
=
x
[
train_length
:
data_length
]
train_y
=
y
[
0
:
train_length
]
test_y
=
y
[
train_length
:
data_length
]
train
=
Data
(
train_x
,
train_y
)
test
=
Data
(
test_x
,
test_y
)
return
train
,
test
# train, test = dataset.get_splits()
# trainloader = torch.utils.data.DataLoader(x, batch_size=8, shuffle=True, num_workers=0)
def
train_model
(
train_dl
,
model
,
lr
,
numEpochs
,
optimizerFlag
,
modelSaveFileName
,
criterionFlag
,
startEpoch
):
if
optimizerFlag
==
'
A
'
:
optimizer
=
Adam
(
model
.
parameters
(),
lr
=
lr
,
betas
=
(
0.9
,
0.999
),
eps
=
1e-08
,
weight_decay
=
0
,
amsgrad
=
False
)
else
:
optimizer
=
SGD
(
model
.
parameters
(),
lr
=
lr
,
momentum
=
0.9
)
if
criterionFlag
==
'
MSE
'
:
criterion
=
MSELoss
()
else
:
criterion
=
BCELoss
()
for
epoch
in
range
(
startEpoch
+
1
,
numEpochs
+
1
):
# enumerate mini batches
loop
=
tqdm
(
enumerate
(
train_dl
),
total
=
len
(
train_dl
),
leave
=
False
)
for
i
,
(
inputs
,
targets
)
in
loop
:
# clear the gradients
optimizer
.
zero_grad
()
# compute the model output
yhat
=
model
(
inputs
)
# calculate loss
loss
=
criterion
(
yhat
,
targets
)
# credit assignment
loss
.
backward
()
# update model weights
optimizer
.
step
()
# upgrade progress bar
loop
.
set_description
(
f
"
Epoch [
{
epoch
}
/
{
numEpochs
}
]
"
)
# loop.set_postfix(loss=loss.item(),acc=torch.rand(1).item())
if
epoch
%
10
==
0
:
torch
.
save
({
'
epoch
'
:
epoch
,
'
model_state_dict
'
:
model
.
state_dict
(),
'
optimizer_state_dict
'
:
optimizer
.
state_dict
(),
'
lr
'
:
lr
,
},
modelSaveFileName
+
str
(
epoch
)
+
"
.pt
"
)
# TODO anpassen an unsere Situation
class
Net
(
nn
.
Module
):
def
__init__
(
self
):
super
().
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
1
,
8
,
kernel_size
=
5
)
# 1d pictures, 8 pictures at a time, 5x5 kernel size
self
.
pool
=
nn
.
MaxPool2d
(
2
,
2
)
self
.
conv2
=
nn
.
Conv2d
(
1
,
8
,
kernel_size
=
5
)
self
.
fc1
=
nn
.
Linear
(
200
,
120
)
self
.
fc2
=
nn
.
Linear
(
120
,
84
)
self
.
fc3
=
nn
.
Linear
(
84
,
10
)
def
forward
(
self
,
x
):
x
=
self
.
pool
(
F
.
relu
(
self
.
conv1
(
x
)))
x
=
self
.
pool
(
F
.
relu
(
self
.
conv2
(
x
)))
x
=
torch
.
flatten
(
x
,
1
)
# flatten all dimensions except batch
x
=
F
.
relu
(
self
.
fc1
(
x
))
x
=
F
.
relu
(
self
.
fc2
(
x
))
x
=
self
.
fc3
(
x
)
return
x
class
Data
(
Dataset
):
def
__init__
(
self
,
x
,
y
):
self
.
x
=
x
self
.
y
=
y
self
.
len
=
len
(
x
)
def
__getitem__
(
self
,
index
):
self
.
xc
=
self
.
x
[
index
]
self
.
yc
=
self
.
y
[
index
]
return
self
.
xc
,
self
.
yc
def
__len__
(
self
):
return
self
.
len
path
=
"
training_data_alignment.h5
"
batch_size
=
8
num_Epochs
=
100
modelSaveFileName
=
'
model.pt
'
optimizerFlag
=
'
A
'
criterionFlag
=
'
MSE
'
# MSE oder BCE
startEpoch
=
1
learning_rate
=
0.01
train
,
test
=
prepare_data
(
path
)
train_dl
=
DataLoader
(
train
,
batch_size
=
batch_size
,
shuffle
=
True
,
num_workers
=
0
,
pin_memory
=
False
)
test_dl
=
DataLoader
(
test
,
batch_size
=
batch_size
,
shuffle
=
True
,
num_workers
=
0
,
pin_memory
=
False
)
net
=
Net
()
train_model
(
train_dl
,
net
,
learning_rate
,
num_Epochs
,
optimizerFlag
,
modelSaveFileName
,
criterionFlag
,
startEpoch
)
# print(net)
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment