Skip to content
Snippets Groups Projects
Commit 2f3ac489 authored by Mario Sänger's avatar Mario Sänger
Browse files

Remove SVM classifier from evaluation

parent 758bf220
No related merge requests found
......@@ -83,41 +83,42 @@ class Clef18Task1Base(LoggingMixin):
("SGD", lambda label, input_dim, output_dim, val_data: SGDClassifier(verbose=1, random_state=42)),
("DT", lambda label, input_dim, output_dim, val_data: DecisionTreeClassifier(random_state=42)),
("RF", lambda label, input_dim, output_dim, val_data: RandomForestClassifier(verbose=1, random_state=42)),
("LinearSVM", lambda label, input_dim, output_dim, val_data: LinearSVC(max_iter=10000, verbose=1, random_state=42)),
#("LinearSVM", lambda label, input_dim, output_dim, val_data: LinearSVC(max_iter=10000, verbose=1, random_state=42)),
("DNN-200", lambda label, input_dim, output_dim, val_data:
self.create_dnn_classifier("dnn-200", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200],
batch_normalization=False, dropout_rate=0.0, epochs=10, batch_size=2)),
batch_normalization=False, dropout_rate=0.0, epochs=10, batch_size=16)),
("DNN-300", lambda label, input_dim, output_dim, val_data:
self.create_dnn_classifier("dnn-300", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300],
batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)),
batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=16)),
("DNN-200-BN-DO", lambda label, input_dim, output_dim, val_data:
self.create_dnn_classifier("dnn-200-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200],
batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)),
batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=16)),
("DNN-300-BN-DO", lambda label, input_dim, output_dim, val_data:
self.create_dnn_classifier("dnn-300-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300],
batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)),
batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=16)),
("DNN-200-100", lambda label, input_dim, output_dim, val_data:
self.create_dnn_classifier("dnn-200-100", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 100],
batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)),
batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=16)),
("DNN-200-200", lambda label, input_dim, output_dim, val_data:
self.create_dnn_classifier("dnn-200-200", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 200],
batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)),
batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=16)),
("DNN-300-200", lambda label, input_dim, output_dim, val_data:
self.create_dnn_classifier("dnn-300-200", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[300, 200],
batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=2)),
batch_normalization=False, dropout_rate=0.0, epochs=50, batch_size=16)),
("DNN-200-100-BN-DO", lambda label, input_dim, output_dim, val_data:
self.create_dnn_classifier("dnn-200-100-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 100],
batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)),
batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=16)),
("DNN-200-200-BN-DO", lambda label, input_dim, output_dim, val_data:
self.create_dnn_classifier("dnn-200-200-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim, hidden_layer_sizes=[200, 200],
batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)),
batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=16)),
("DNN-300-200-BN-DO", lambda label, input_dim, output_dim, val_data:
self.create_dnn_classifier("dnn-300-200-bn-do", label, val_data, input_dim=input_dim, output_dim=output_dim,hidden_layer_sizes=[300, 200],
batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=2)),
batch_normalization=True, dropout_rate=0.5, epochs=50, batch_size=16)),
('DU1', lambda label, input_dim, output_dim, val_data: DummyClassifier(strategy="stratified")),
('DU2', lambda label, input_dim, output_dim, val_data: DummyClassifier(strategy="most_frequent"))
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment