Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import h5py
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from h5py import Dataset
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import DataLoader
from torch.optim import SGD, Adam
from torch.nn import Linear, Sigmoid, Module, MSELoss, BCELoss
from tqdm import tqdm
# f hat 100k keys, jeder key hat eine hdf5 group als value
# jede group hat 2 keys. in key 'X' ist ein 2d numpy array
# welches die 200x200 pixel des bildes speichert (dset[70:71,:]
# zugriff auf zeile 71) und in key'Y' sind die drei
# korrespondierenden achsenwerte der kamera X, Y und Z
def prepare_data(path):
# load h5 file
sims = 3000 # only half the data
x = []
y = []
with h5py.File(path, 'r') as f:
for key in range(sims):
X = np.array(f['/' + str(key) + '/X'])
Y = np.array(f['/' + str(key) + '/Y'])
X = MinMaxScaler().fit_transform(X) # normalise the data between 0 and 1
# Y = MinMaxScaler().fit_transform(Y)
# print(Y[:])
if np.amax(X) > 0: # ignore the blank images (no data)
x.append(X)
y.append(Y)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
x = torch.tensor(x, dtype=torch.float32, device=device) # input
y = torch.tensor(y, dtype=torch.float32, device=device) # output
print('x.shape', np.shape(x))
print('y.shape', np.shape(y))
print(x.element_size() * x.nelement())
# split test and train data
data_length = np.shape(x)[0]
train_length = data_length - 1000
train_x = x[0:train_length]
test_x = x[train_length:data_length]
train_y = y[0:train_length]
test_y = y[train_length:data_length]
train = Data(train_x, train_y)
test = Data(test_x, test_y)
return train, test
# train, test = dataset.get_splits()
# trainloader = torch.utils.data.DataLoader(x, batch_size=8, shuffle=True, num_workers=0)
def train_model(train_dl, model, lr, numEpochs, optimizerFlag, modelSaveFileName, criterionFlag, startEpoch):
if optimizerFlag == 'A':
optimizer = Adam(model.parameters(), lr=lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
else:
optimizer = SGD(model.parameters(), lr=lr, momentum=0.9)
if criterionFlag == 'MSE':
criterion = MSELoss()
else:
criterion = BCELoss()
for epoch in range(startEpoch + 1, numEpochs + 1):
# enumerate mini batches
loop = tqdm(enumerate(train_dl), total=len(train_dl), leave=False)
for i, (inputs, targets) in loop:
# clear the gradients
optimizer.zero_grad()
# compute the model output
yhat = model(inputs)
# calculate loss
loss = criterion(yhat, targets)
# credit assignment
loss.backward()
# update model weights
optimizer.step()
# upgrade progress bar
loop.set_description(f"Epoch [{epoch}/{numEpochs}]")
# loop.set_postfix(loss=loss.item(),acc=torch.rand(1).item())
if epoch % 10 == 0:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'lr': lr,
}, modelSaveFileName + str(epoch) + ".pt")
# TODO anpassen an unsere Situation
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 8, kernel_size=5) # 1d pictures, 8 pictures at a time, 5x5 kernel size
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(1, 8, kernel_size=5)
self.fc1 = nn.Linear(200, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class Data(Dataset):
def __init__(self, x, y):
self.x = x
self.y = y
self.len = len(x)
def __getitem__(self, index):
self.xc = self.x[index]
self.yc = self.y[index]
return self.xc, self.yc
def __len__(self):
return self.len
path = "training_data_alignment.h5"
batch_size = 8
num_Epochs = 100
modelSaveFileName = 'model.pt'
optimizerFlag = 'A'
criterionFlag = 'MSE' # MSE oder BCE
startEpoch = 1
learning_rate = 0.01
train, test = prepare_data(path)
train_dl = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=False)
test_dl = DataLoader(test, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=False)
net = Net()
train_model(train_dl, net, learning_rate, num_Epochs, optimizerFlag, modelSaveFileName, criterionFlag, startEpoch)
# print(net)